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The class of systems considered is modeled as

ẋ =Ax + Bu,

yh =
1

2
x>Chx + d>h x , h = 1, . . . , q

Without loss of generality, the matrices Ch are assumed to be symmetric.

Its observability properties are affected by the input u

Example (Observability depends on input)

Impossible to distinguish between initial conditions x0 and −x0 for{
ẋ = 0

y = x2
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The class of systems considered is modeled as

ẋ =Ax + Bu,

yh =
1

2
x>Chx + d>h x , h = 1, . . . , q

Without loss of generality, the matrices Ch are assumed to be symmetric.

Robot localization from range measurements1

{
ẋ = u

yh = ‖x − ah‖2 − ‖ah‖2

1T. Hamel and C. Samson, “Position estimation from direction or range
measurements,” Automatica, vol. 82, pp. 137 –144, 2017.
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The class of systems considered is modeled as

ẋ =Ax + Bu,

yh =
1

2
x>Chx + d>h x , h = 1, . . . , q

Without loss of generality, the matrices Ch are assumed to be symmetric.

We propose a systematic approach to immerse the original system

into the higher order system

ż =A(u)x + Bu,
y =Cz

I Incorporating a minimum number of auxiliary states
I Uniform observability of the pair (A(u(t)), C) guarantees

convergence of Kalman-type filters
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Single-Output Systems

Definition

I Mn ⊂ Rn×n denote the space of real n× n symmetric matrices

I The Lyapunov operator LA : Mn →Mn is defined by

LA(X ) := XA + A>X

Observation: Any quadratic form, along the trajectories of the
system, satisfies

1

2

d

dt
(x>Qx) =

1

2
x>LA(Q)x + (QBu)>x , (1)

for some symmetric matrix Q ∈Mn.
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Single-Output Systems

Q

L
[1]
A (Q)

L
[2]
A (Q)

L
[3]
A (Q)

L
[4]
A (Q) Mn (symmetric matrices)

LA−invariant

Lemma

For any Q ∈Mn, there exists a minimum number m such that
m ≤ n(n + 1)/2 and

Q := span{L[0]A (Q),L
[1]
A (Q), . . . ,L

[m−1]
A (Q)}

is LA−invariant.
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Single-Output Systems

Example

Consider the double-integrator system on Rn
ẋ1 = x2

ẋ2 = u

y = 0.5‖x1‖2

We have

L
[0]
A (C ) =

[
In 0
0 0

]
, L

[1]
A (C ) =

[
0 In
In 0

]
, L

[2]
A (C ) =

[
0 0
0 2In

]
and finally, L

[3]
A (C ) = 0. Hence

span{L[0]A (Q),L
[1]
A (Q),L

[2]
A (Q)}

is LA−invariant.
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Single-Output Systems

Example

Consider the double-integrator system on Rn
ẋ1 = x2

ẋ2 = x1 + 2x2 + u

y = 0.5x21 + 0.5x22

We have

L
[1]
A (C ) =

[
0 2
2 4

]
, L

[2]
A (C ) =

[
4 8
8 20

]
and finally, L

[2]
A (C ) = 4(L

[0]
A (C ) + L

[1]
A (C )) . Hence

span{L[0]A (Q),L
[1]
A (Q)}

is LA−invariant. In this case, the number of auxiliary states needed
is m = 2, which is strictly less than n(n + 1)/2 = 3.
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Single-Output Systems

Let us define the following auxiliary state variables

ξk :=
1

2
x>L

[k]
A (C )x , k = 0, 1, · · · , (m − 1), (2)

One has2

ξ̇k = ξk+1 + (Bu)>L
[k]
A (C )x , k = 0, . . . , (m − 2)

ξ̇m−1 =
m−1∑
k=0

αkξk + (Bu)>L
[m−1]
A (C )x .

(3)

2By the previous lemma, there exist αk s.th. L[m]
A (Q) =

∑m−1
k=0 αkL

[k]
A (Q)
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Single-Output Systems
Define z :=

[
ξm−1 · · · ξ1 ξ0 x>

]> ∈ Rm+n :

ż =A(u)x + Bu,
y =Cz

A(u) =



αm−1 αm−2 . . . α1 α0 (Bu)>L
[m−1]
A (C )

1 0 . . . 0 0 (Bu)>L
[m−2]
A (C )

...
...

...
. . .

...
...

0 0 . . . 1 0 (Bu)>L
[0]
A (C )

0 0 · · · 0 0 A


,

B :=
[
0 0 · · · B>

]>
, C :=

[
0 0 · · · 0 1 d>

]
Uniform observability has been discussed in3 when αk = 0

3D. Theodosis, S. Berkane, and D. V. Dimarogonas, “State estimation for a
class of linear systems with quadratic output,” IFAC-PapersOnLine, vol. 54,
no. 9, pp. 261–266, 2021.
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Multiple-Output Systems
The naive extension of the single-output procedure to
multiple-outputs does not guarantee the minimum number of
auxiliary states

C1

L
[1]
A (C1)

L
[2]
A (C1)

L
[3]
A (C1)

L
[4]
A (C1)

Mn (symmetric matrices)
C2

L
[1]
A (C2)

L
[2]
A (C2)

dim = 5
dim = 3

dim(C1 + C2) = dim(C1) + dim(C2)− dim(C1 ∩ C2)

≤ dim(C1) + dim(C2)
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Multiple-Output Systems 4

yh =
1

2
x>Chx + d>h x

=
1

2
vec(Ch)>(x ⊗ x) + d>h x

=
1

2
vech(Ch)>D>n (x ⊗ x) + d>h x .

=
1

2
vech(Ch)>x [2] + d>h x .

(4)

Example

(x ⊗ x) =


x21
x1x2
x2x1
x22

 , D2


1 0 0
0 1 0
0 1 0
0 0 1

⇒ x [2] =

 x21
2x1x2
x22



4

For A ∈ Mn, vech(A) is obtained by vectorizing only the lower triangular
part of A. One has Dnvech(A) = vec(A) where Dn is the duplication matrix.
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Multiple-Output Systems
The output vector y := [y1 · · · yq]> can be written as

y =
1

2

vech(C1)>

...
vech(Cq)>

 x [2] +

d
>
1
...
d>q

 x =: C̄ x [2] + Dx . (5)

Lemma

Along the trajectories of the system, one has

d

dt
x [2] = Āx [2] + Ū(t)x . (6)

with Ā := D>n (A⊕ A)(D+
n )> and Ū(t) := D>n (Bu(t)⊕ Bu(t)).

I The extended state z> := [(x [2])> x>] leads to an LTV
system. The number of added auxiliary states is n(n + 1)/2.
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Multiple-Output Systems

I In this work, we propose a procedure to add the minimum
number of auxiliary states to form an LTV system.

I Rank factorization5

1

2

vech(C1)>

...
vech(Cq)>

 = C̄ = F L̄0, rank(L̄0) = rank(C̄ ) = p0

I Let ξ0 ∈ Rp0 such that

ξ0 := L̄0x
[2] =

[
1
2x
>L1x · · · 1

2x
>Lp0x

]>
. (7)

I We have6

ξ̇0 = L̄0Āx
[2] + L̄0Ū(t)x . (8)

5L̄0 is full row rank and F is full column rank.
6ξ̇0 will be linear in ξ0 and x if and only if span{L1, · · · , Lp0} is LA−invariant
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Multiple-Output Systems

I Assume

p1 := rank

[
L̄0
L̄0Ā

]
− p0 6= 0 (9)

I There exist P0,M
(0)
0 , L̄1 such that7

P0L̄0Ā =

[
L̄1

M
(0)
0 P0L̄0

]
. (10)

I If we let ξ1 := L̄1x
[2], it follows that

P0ξ̇0 =

[
0

M
(0)
0

]
P0ξ0 +

[
Ip1
0

]
ξ1 + P0L̄0Ūx . (11)

7Pk is a permutation matrix

16 / 21



Multiple-Output Systems
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Multiple-Output Systems
We define the extended state vector

z :=


Pm−1ξm−1

...
P0ξ0
x

 :=


Pm−1L̄m−1x

[2]

...

P0L̄0x
[2]

x

 ∈ Rn+
∑m−1

k=0 pk , (12)

the dynamics of z are an LTV system with matrices

A(u) =



M̄
(m−1)
m−1 · · · · · · M̄

(m−1)
0

P̄m−1 . . . · · · M̄
(m−2)
0

...
. . .

...
...

0 · · · P̄1 M
(0)
0

Pm−1L̄m−1Ū
Pm−2L̄m−2Ū

...
P0L̄0Ū

0 A


, (13)

B =

[
0

B

]
, C =

[
0 · · · 0 FP>0 D

]
, (14)
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Multiple-Output Systems

Example

Consider the system
ṗ = va + vw

v̇a = u(t)

v̇w = 0

{
y1 = 0.5‖p‖2

y2 = 0.5‖va‖2

The proposed algorithm returns m = 3 with

ξ2 = 2‖va + vw‖2

ξ1 = 2p>(va + vw )

ξ0 =

[
‖p‖2
‖va‖2

]
These auxiliary states allow to bring the system dynamics to
an LTV form where a Kalman-type estimator can be applied.
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Conclusion and Future Work

Summary:

I An immersion-type technique that transforms LTI systems
with quadratic outputs to an LTV system with linear output

I The approach guarantees that only the minimum number of
auxiliary states is introduced

I The resultant systems observability is tightly related to the
richness of the input signal

Future work:

I Extend the approach to LTV systems with quadratic outputs

I Extend the approach to polynomial outputs

I Design reduced-order observers to estimate only the original
state
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Thank you

Questions?
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