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The class of systems considered is modeled as

x =Ax + Bu,

1
yhzaxTChx—kthx, h=1...,qg

Without loss of generality, the matrices C, are assumed to be symmetric.
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The class of systems considered is modeled as

x =Ax + Bu,

1
yh:§xTChx—|—thx, h=1...,qg

Without loss of generality, the matrices C, are assumed to be symmetric.

Its observability properties are affected by the input u

Example (Observability depends on input)

Impossible to distinguish between initial conditions xo and —xq for

x=0
y=x"
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The class of systems considered is modeled as

x =Ax + Bu,

1
yh:EXTChx—l—thx, h=1,...,q

Without loss of generality, the matrices Cp are assumed to be symmetric.

Robot localization from range measurements!

) A

~ //
X=u ::S (g-‘ ) :‘

yh = lx = anl|* — [|an]? Pk

g <
1T. Hamel and C. Samson, “Position estimation from direction or range
measurements,” Awutomatica, vol. 82, pp. 137 =144, 2017.
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The class of systems considered is modeled as

x =Ax + Bu,
1
yhzixTChx+thx, h=1,...,q

Without loss of generality, the matrices C, are assumed to be symmetric.

We propose a systematic approach to immerse the original system

into the higher order system

z =A(u)x + Bu,
y =Cz

» Incorporating a minimum number of auxiliary states
» Uniform observability of the pair (A(u(t)),C) guarantees
convergence of Kalman-type filters
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Single-Output Systems

» M, C R™" denote the space of real n x n symmetric matrices

> The Lyapunov operator La : M, — M, is defined by

La(X) = XA+ ATX
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Single-Output Systems

» M, C R™" denote the space of real n x n symmetric matrices

> The Lyapunov operator La : M, — M, is defined by
La(X) = XA+ ATX

Observation: Any quadratic form, along the trajectories of the
system, satisfies

1d

2dt( TQx) fx LA(Q)X—I—(QBU)TX, (1)

for some symmetric matrix Q € M,,.
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Single-Output Systems

L 4 —invariant

M, (symmetric matrices)

For any Q € M, there exists a minimum number m such that
m < n(n+1)/2 and

Q:= span{L/[f\)](Q), L,[:](Q); . L,[qm_I](Q)}
is La—invariant.
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Single-Output Systems

Consider the double-integrator system on R"

X1 = X2
).(2 =u
y = 0.5||X1||2

We have
[0] |l 0 [1] |10 I [2] |00
LA(C)_ |:0 0:|7 LA(C)_ |:In ol LA(C)_ 0 2In
and finally, Ll[j’](C) = 0. Hence

span{LE(Q), LY (@), LB (@)}

is La—invariant.
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Single-Output Systems

Consider the double-integrator system on R"

).(1 = X2
xXo=x1+2x+u
y = 0.5x¢ + 0.5x3

LYo = [2 i], LR () = [2 280]

and finally, LB(C) = (L) + LW(C)) . Hence

We have

span{LIY(Q), LI(Q)}

is La—invariant. In this case, the number of auxiliary states needed

is m = 2, which is strictly less than n(n+1)/2 = 3.
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Single-Output Systems

Let us define the following auxiliary state variables

1
fk = EXTL%(](C)X y k = 0717”' 7(m_ 1)7 (2)

’By the previous lemma, there exist a s.th. Ll[qm](Q) =yrt akL[:](Q)
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Single-Output Systems

Let us define the following auxiliary state variables

1
fk = EXTL%(](C)X y k = 0717”. 7(m_ 1)7 (2)

One has?

€ =&y + (Bu) TLW(O)x, k=0,... (m—2)

] m—1 B (3)
1= axki+ (Bu) LY H(O)x.
k=0

2By the previous lemma, there exist o s.th. Ll[qm](Q) = ZZ':_OI akL[:](Q)
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Single-Output Systems

Define z := [{m_l

& & x| eRrRmn.

z =A(u)x + Bu,
y =Cz
[m 1 Qma a1 ag | (Bu)TLYH(0)]
1 0 0 0| (Bl
A(u)y=1| : . : ;
0 0 1 0| By
|0 0 0 0] A |
B=[0 0 ---|BT]", c:=[0 0 0 1]dT]

Uniform observability has been discussed in® when o =0

3D. Theodosis, S. Berkane, and D. V. Dimarogonas, “State estimation for a

class of linear systems with quadratic output,”

IFAC-PapersOnlLine, vol. 54,
no. 9, pp. 261-266, 2021.
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Multiple-Output Systems
The naive extension of the single-output procedure to
multiple-outputs does not guarantee the minimum number of
auxiliary states

M, (symmetric matrices)

dim =3

dim((Cl + (C2) = dim((Cl) + dim((Cz) — dim((Cl N (Cz)
< dim(Cy) + dim(Cyp)
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Multiple-Output Systems *

1
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Multiple-Output Systems *
L T T
Yh = EX Chx + dy x

= %vec(Ch)T(X ® x) + d) x
(4)
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Multiple-Output Systems *

1
Vh = 5xTChx + d,—,rx
1
= “vec(Cp) T(x ® x) + d} x
: (4)
= Evech(Ch)TD,T(x ® x) + dy x.

*For A € M, vech(A) is obtained by vectorizing only the lower triangular
part of A. One has D,vech(A) = vec(A) where D, is the duplication matrix. 3 / 21
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Multiple-Output Systems *

1
1
= Evec(Ch)T(x ® x) + dj x
1
= Evech(Ch)TD,—,r(x ® x) + dj x.

= %Vech( Cp)'x + df x.

2
X1

100 2
| xixe 0 10 2] _ 1
(X®X)_ xox1 | D, 010 = X7 = 2X12X2
X2 00 1 %

*For A € M, vech(A) is obtained by vectorizing only the lower triangular
part of A. One has D,vech(A) = vec(A) where D, is the duplication matrix, 3 / 21



Multiple-Output Systems
The output vector y := [y1 -+~ y,4] | can be written as

) vech(Cl)T d;—
y == : Py | | x= Cx1¥ 4 Dx. (5)
vech(Cy) " qu

Lemma

Along the trajectories of the system, one has

d _ _
axp] = AxPl + 0(t)x. (6)
with A := D] (A@® A)(D;")" and U(t) := D, (Bu(t) © Bu(t)).

> The extended state z" := [(xI?)T xT] leads to an LTV
system. The number of added auxiliary states is n(n+ 1)/2.
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Multiple-Output Systems

» In this work, we propose a procedure to add the minimum
number of auxiliary states to form an LTV system.
» Rank factorization®
vech(Cy)T
> : = C = FLy, rank(Lo) = rank(C) = po

vech(C,) "
> Let & € RP such that
& = Lox? = [AxTLix - %XTLPOX]T. (7)

» We have®
fo = ZoAXP] + Zo U(t)x. (8)

*Lo is full row rank and F is full column rank.
8¢, will be linear in & and x if and only if span{Ly, - , Ly} is La—invariant
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Multiple-Output Systems

» Assume _
._ Lo
p1 := rank [ZOA} —po#0 (9)

» There exist Pg, I\/I(go), L; such that”

PoloA— | ol (10)
T MO Py, |

> If we let &1 := Li1x1?, it follows that

: 0 / _
Po&o = [M(o)] Po&o + [81] &1+ PoLoUx. (11)
0

TPy is a permutation matrix

16 /21



Multiple-Output Systems

Algorithm 1 Computation of the matrices f,k,Pk,M(”

1

Require: Output matrix C' and matrix A

1: Compute pg := rank(C')

2: Rank factorize €' = F L with rank(Lg) = pg
3 for ke {1,2,---} do
4 Calculate
Lo
. k=1
pg:=rtank | _°* — Z‘Ul (30)
L1 izo
Lig—1A
5: Find a permutation matrix Fr_; € RPx-1*Pi-t ma-
trices M'l(k*l) € RP—1=p)%pi and a full row matrix
Ly e Reexn(n+1)/2 gatisfying!
L T
Po Ly 1A= [Z::ol M’,(kil)ﬂii] (3D
6: if p. = 0 then
7 Define m = k
8: return the matrices f,k,l.,Pk,lrflIl(f;U for all
1<i<k<m.
9: end if
10: end for
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Multiple-Output Systems

We define the extended state vector

c RIS P (12)

Pm-1§m-1 Pm—llm—lx[zl-
z:= : = _5
Po&o PoLox!?!
X X ]
the dynamics of z are an LTV system with matrices
_/\7]_,("’71_11) cee /\Z]ém—l) Pm—lgm—l L:/_
Pm,1 et M(()m72) Pm—2Lm—2U
A(u) = : I : _ _
0 e [51 /\/]éo) PoloU
I 0 A
[0
B:*,C:[O -+ 0 FPJ‘D},
B

(14)
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Multiple-Output Systems

Consider the system

p = v, + vV

T o)l

v, = u(t) 5
y2 = 0.5]va|

vw =20
The proposed algorithm returns m = 3 with

§2 = 2||va + VWH2
61 = 2PT(Va ol Vw)

_ (el

o= |ji)e
These auxiliary states allow to bring the system dynamics to
an LTV form where a Kalman-type estimator can be applied.
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Multiple-Output Systems

Consider the system

p =Vvitv
. 2w {y1 = 0.5/ p|12

V. =ul(t
5 =ult) y2 = 05|l
vy, =0

| | | T
[oa() — (1)
0w (t) — ()]

5 20 25 30
time (s)
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Conclusion and Future Work

Summary:

» An immersion-type technique that transforms LTI systems
with quadratic outputs to an LTV system with linear output

» The approach guarantees that only the minimum number of
auxiliary states is introduced

» The resultant systems observability is tightly related to the
richness of the input signal

Future work:
» Extend the approach to LTV systems with quadratic outputs
» Extend the approach to polynomial outputs

> Design reduced-order observers to estimate only the original
state
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Thank you

Questions?
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