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Introduction

Global approaches

• Navigation
functions
(Koditschek et
al., 1990).

• Navigation
transform
(Loizou, 2017).

• Hybrid
feedback
(Sanfelice et
al., 2006;
Berkane et al.,
2019; Casau et
al., 2019;
Berkane et al.,
2021).

Local approaches

• Artificial potential
fields (Khatib,
1986; Koditschek et
al., 1990).

• Extended navigation
functions (Lionis et
al., 2007; Filippidis
et al., 2011).

• Separating
hyperplanes (Arslan
et al., 2019).

• Navigation through
safety velocity cones
(Berkane, 2021).

Navigate unknown en-
vironments filled with
obstacle.

Objective: design a
sensor-based feedback
control to ensure safe
navigation.

Real-Time Sensor-Based Feedback Control for Obstacle Avoidance in Unknown Environments Lyes Smaili , Soulaimane Berkane 2/24



Notations and Definitions

Reach of sets

The skeleton Sk(A):

Sk(A) := {x ∈ Rn : card(PA(x)) > 1}.

The reach of A at x ∈ A is defined as

reach(A, x) := 0, x ∈ ∂A ∩ Sk(A),
sup{r > 0 : Sk(A) ∩ B(x, r) = ∅},

otherwise.

The reach of the set A is given by

reach(A) := inf
x∈A

{reach(A, x)}.

The set A has positive reach if
reach(A) > 0.
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Notations and Definitions

Sets of class Ck,l

k ∈ N: the differentiability order.

l ∈ [0, 1]: is the Hölder continuity.

• If l = 0: the kth derivative is bounded.

• If l = 1: the kth derivative is Lipschitz continuous.
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Notations and Definitions

Tangent cone

We denote by TA(x) the tangent cone
to A at a point x ∈ Rn, and is given by

TA(x) =
{
z ∈ Rn :

lim
τ→0+

dA(x+ τz)

τ
= 0

}
.

Nagumo’s theorem

Consider the system ẋ = f(x). For each
initial condition x(0) ∈ X , where X is
a closed set, we assume that the system
admits a unique solution. Then the set
X is forward invariant if and only if

f(x) ∈ TX (x),∀x ∈ X .

Figure: Tangent cones and
Nagumo’s Theorem Application.
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Problem Formulation
Workspace - Free Space

Workspace W: closed subset of the Euclidean space Rn.

Obstacles Oi, i = 1, ...,M : open subsets in Rn strictly contained in
W.

Free space X : a subset in Rn,

X := W \
M⋃
i=1

Oi. (1)
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Problem Formulation
Workspace - Free Space

Assumption 1

The set X has a positive reach, i.e.,

reach(X ) > 0. (2)

In other words, there exists a positive real h > 0 such that any point
x ∈ X , with d∁X (x) < h, has a unique projection P∂X (x).

If Assumption 1 holds, then

dOi,Oj
> 2h, ∀i, j ∈ M with i ̸= j, (3)
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Problem Formulation
Workspace - Practical Free Space

Consider a ball-shaped robot with a radius R
and centred at x ∈ Rn.

Let ϵ be a positive real and satisfies the
following inequality:

0 < R < ϵ < h. (4)

We define the practical free space as follows:

Xϵ := {x ∈ Rn : b∁X (x) ≥ ϵ} ⊂ X . (5)
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Problem Formulation
Dynamical System

We consider the first-order robot dynamics

ẋ = u, u ∈ Rn. (6)

The robot is operating in the free space X and restricted to stay in
the practical free space Xϵ.

Let xd be the goal position.

Objectives

finding u = κ(x, xd,Xϵ), such that:

• κ is locally Lipschitz continuous.
• κ is sensor-based.
• safety is guaranteed, i.e., x must stay in Xϵ.
• the robot’s position is asymptotically stabilized at xd.

For the sake of simplicity, κ(x, xd,Xϵ) will be written as κ(x).
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Distance-Based Smooth Controller
Feedback Control Design

To ensure safety, we apply Nagumo’s theorem, i.e., we need

u ∈ TXϵ
(x), ∀x ∈ Xϵ. (7)

To guarantee convergence, one must keep u as close as possible to
the nominal controller κ0.

This consists of solving the nearest point problem formulated as
follows

min
u

||u− κ0(x)||2 subject to u ∈ TXϵ
(x),∀x ∈ Xϵ, (8)

The solution for u to this optimization problem is equivalent to
finding the projection of the nominal control κ0(x) onto the
tangent cone TXϵ

(x).
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Distance-Based Smooth Controller
Feedback Control Design

When x ∈ int(Xϵ):

• The tangent cone TXϵ(x) ≡ Rn.

When x ∈ ∂Xϵ:

• For ∁X ≠ {∅}, with a positive reach
h, ∁Xϵ is a set of class C1,1 and the
boundary ∂Xϵ is a C1,1-submanifold
of dimension (n− 1).a

• The tangent cone is given by the
half-space

TXϵ(x) = {z ∈ Rn : v (x)⊤ z ≤ 0},
∀x ∈ ∂Xϵ, (9)

v(x): is the outward normal unit
vector associated to each x ∈ ∂Xϵ.

aMichel C Delfour and J-P Zolésio. Shapes and geometries: metrics, analysis,
differential calculus, and optimization. SIAM, 2011.

Figure: Tangent cone for
smooth boundary sets.
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Distance-Based Smooth Controller
Feedback Control Design

• The projection P(κ0(x),TXϵ
(x)) is

unique.

• When v (x)
⊤
κ0 (x) > 0, the projection

reduces to the orthogonal projection
onto the hyperplane v (x)

⊤
z = 0,

which is given by

Π(v (x))κ0 (x) :=(
In − v (x) v (x)

⊤
)
κ0 (x) . (10)
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Distance-Based Smooth Controller
Feedback Control Design

The resulting control law that solves the nearest point problem is given by

u = κ(x) =

{
κ0 (x) , x ∈ int(Xϵ) or v(x)⊤κ0(x) ≤ 0,
Π(x)κ0(0), x ∈ ∂Xϵ and v(x)⊤κ0(x) ≥ 0.

(11)
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Distance-Based Smooth Controller
Feedback Control Design

Knowing that v(x) = −∇b∁X (x), ∀x ∈ ∂Xϵ, we can rewrite the
controller in terms of the distance function

κ(x) =

{
κ0 (x) , b∁X (x) > ϵ or κ0 (x)

⊤ ∇b∁X (x) ≥ 0,

Π(x)κ0 (x) , b∁X (x) = ϵ and κ0 (x)
⊤ ∇b∁X (x) ≤ 0,

(12)

This controller is a piecewise continuous vector field with a
discontinuity at the boundary ∂Xϵ of the practical free space.

Figure: Resulting trajec-
tory under the piecewise
continuous controller.
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Distance-Based Smooth Controller
Feedback Control Design

The smoothed version of the controller is given by

κ(x) =

{
κ0 (x) , b∁X (x) > ϵ′ or κ0 (x)

⊤ ∇b∁X (x) ≥ 0,

Π̂ (x)κ0 (x) , b∁X (x) ≤ ϵ′ and κ0 (x)
⊤ ∇b∁X (x) ≤ 0,

(13)
where 0 < R < ϵ < ϵ′ ≤ h and

Π̂ (x) := In − ϕ (x)∇b∁X (x)∇b∁X (x)⊤, (14)

ϕ (x) := min

(
1,

ϵ′ − b∁X (x)

ϵ′ − ϵ

)
. (15)

Figure: Resulting trajec-
tory under the smooth
controller.

Real-Time Sensor-Based Feedback Control for Obstacle Avoidance in Unknown Environments Lyes Smaili , Soulaimane Berkane 15/24



Distance-Based Smooth Controller
Safety Analysis

Lemma 1

We assume the free space X is a set of class C2,l, where 0 ≤ l ≤ 1.
Consider the practical free space set Xϵ. Then, the smoothed control κ(x)
is locally Lipschitz-continuous.

Theorem 2 (Safety)

Consider the set X ⊂ Rn that describes the free space. Consider the set
Xϵ ∈ Rn that describes the practical free space. Consider the closed-loop
system under the locally Lipschitz-continuous control law κ(·). Then,
• the closed-loop system admits a unique solution and,

• the set Xϵ is forward invariant.

The forward invariance of Xϵ is equivalent to the safety of the robot.
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Distance-Based Smooth Controller
Stablity Analysis

We a consider the following nominal controller

κ0(x) = −k(x− xd), k > 0. (16)

Theorem 3 (Stability)

Under the nominal controller κ0(.) given by (16), we have

• the distance ||x− xd|| is non-increasing,
• the equilibrium point x = xd is locally exponentially stable, and

• and trajectories converge to the set E ∪ {xd}, where

E := {x : b∁X (x) = ϵ, (x− xd) = λ∇b∁X (x) , λ ∈ R>0} (17)

is a set of measure zero.

The nature of the undesired equilibria defined by the set E is directly
related to the topology of the obstacles.
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Convex Sphere Worlds
Topology Of The Obstacle Set

We suppose all obstacles are convex.

Figure: (Left) shows a non-convex obstacle for which the trajectory of the robot
converges to the undesired equilibrium, and (right) shows a convex obstacle for
which the trajectory converges to the desired goal xd.
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Convex Sphere Worlds
Topology Of The Obstacle Set - Strong Convexity Condition

Assumption 2 (Strong Convexity)

The Jacobian matrix JP∂X (x) of the metric projection of any stationary
point x ∈ E onto the boundary ∂X of the free-space satisfy

JP∂X (x) ≺ ||xd−P∂X (x)||
ϵ+||xd−P∂X (x)||In, ∀x ∈ X , (18)

Figure: Visualization of Assumption 3: (left) shows an obstacle that doesn’t
meet the assumption. (Right) shows an obstacle that satisfies the assumption.
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point x ∈ E onto the boundary ∂X of the free-space satisfy

JP∂X (x) ≺ ||xd−P∂X (x)||
ϵ+||xd−P∂X (x)||In, ∀x ∈ X , (18)

Figure: (Left) shows a flat obstacle, as viewed from the position of the vehicle,
for which its trajectory converges to the undesired equilibrium.(Right) shows a
strongly convex obstacle where the trajectory converges to the desired goal xd.
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Convex Sphere Worlds
Topology of the Obstacle Set - AGAS

Theorem 3

In addition, if Assumption 3 holds, then

1 all the undesired equilibria x̄ ∈ E are unstable, and

2 the desired equilibrium xd is locally exponentially stable and almost
globally asymptotically stable.

Real-Time Sensor-Based Feedback Control for Obstacle Avoidance in Unknown Environments Lyes Smaili , Soulaimane Berkane 20/24



Numerical Simulation
2D
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Numerical Simulation
3D
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Conclusion - Future Works

Smooth feedback control law that guarantees safe navigation.

Ensure AGAS under some topological conditions.

Sensor-based and computationally efficient controller.

Future works:

Relaxing the strong convexity assumption.

Extending to higher-order dynamics.
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Thank You!
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