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A classical problem

Vehicle in Rn (n ≥ 2) with state x ∈ Rn, control input u ∈ Rn and single
integrator dynamics:

ẋ = u

Obstacle is a spherical region Bε(c) with center c ∈ Rn, radius ε > 0.

Avoid the obstacle while stabilizing the vehicle position to a given
reference, the origin x = 0.
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The topological obstruction1,2

The origin can not be globally asymptotically stabilized by continuous
pure state feedback in the presence of the obstacle.
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? ? ?

similar problem for

dynamical systems

on spheres

0

?

Even discontinuous pure state feedback cannot achieve global asymptotic
stability that is robust to arbitrarily small measurement noise.

1
D. Liberzon. Switching in systems and control, Springer, 2003.

2
R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with

applications to obstacle avoidance and regulation to disconnected sets of points. ACC, 2006.
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Motivation to use hybrid feedback

Here we use hysteresis switching (proposed, e.g., in 3) as hybrid
mechanism to guarantee robustness.
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3
R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with

applications to obstacle avoidance and regulation to disconnected sets of points. ACC, 2006.
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(Partial) literature survey

Artificial potential fields4:

I pioneering work within the robotics community;
I render the origin attractive and the obstacles repulsive;
I the vehicle navigates along the negative gradient of the artificial

potential field;
I the potential has local minima and is arbitrarily large near the

obstacles.

4
O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Autonomous robot vehicles, 1986.
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(Partial) literature survey

Artificial potential fields

Navigation functions for spherical worlds4:

I all critical points of the artificial potential fields are saddles expect
the origin;

I extended in many directions (multi-agent systems, unknown sphere
words, etc.);

I they are theoretically guaranteed to exist, but they require a
parameter to be arbitrarily large to eliminate local minima.

4
D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds with boundary. Advances in applied mathematics,

1990.
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(Partial) literature survey

Artificial potential fields

Navigation functions

Control barrier functions4:

I control Lyapunov functions are (Lyapunov) functions that can be
made decrease by applying a suitable control, so that stabilization of
the origin is achieved;

I control barrier functions works similarly to guarantee the invariance
of a safe set.

4
P. Wieland and F. Allgöwer. Constructive safety using control barrier functions. IFAC NOLCOS, 2007.

M. Z. Romdlony and B. Jayawardhana. Stabilization with guaranteed safety using control Lyapunov-barrier function. Auto-

matica, 2016.

A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic programs for safety critical

systems. IEEE Trans. Automat. Contr., 2017.
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(Partial) literature survey

Artificial potential fields

Navigation functions

Control barrier functions

Hybrid systems solutions:

I 4 and 5 consider a planar setting (R2) ;
I 6 consider a class of linear systems in Rn and an unsafe point as

obstacle.
I Using tools from higher dimensional geometry, we propose a hybrid

scheme for Rn (can be extended to multiple obtacles)

4
R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with

applications to obstacle avoidance and regulation to disconnected set of points. ACC, 2006.

5
J. I. Poveda, M. Benosman, A. R. Teel, and R. G. Sanfelice. A hybrid adaptive feedback law for robust obstacle avoidance

and coordination in multiple vehicle systems. ACC, 2018.

6
P. Braun, C. M. Kellett, and L. Zaccarian. Unsafe point avoidance in linear state feedback. CDC, 2018.
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Essential ingredient: hybrid systems7

State equations:{
ẋ ∈ F(x), x ∈ F
x+ ∈ J(x), x ∈ J

FJ

Parametrize solut’s by elapsed continuous time t and number of discrete
jumps j

Hybrid solutions (t, j) 7→ φ(t, j) defined on their hybrid time domain
domφ

φ(t, j)

φ(0, 0)

t1 t2 = t3 t4

domφ

t

j 3

2

1

0

7R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical systems: modeling, stability,
and robustness. Princeton University Press 2012.
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Objectives

Objectives for the design of control input u

1 Safety: the obstacle-free region
Rn \ Bε(c) is forward invariant;

2 Stabilization: the origin x = 0 is
globally asymptotically stable;

3 Preservation: for each ε′ > ε, there exist
controller parameters such that the
control law matches, in Rn \ Bε′(c), the
law u = −k0x (k0 > 0) used in the
absence of the obstacle.

ε

0

c

ẋ = u

x1

x2

Bε(c)

1 and 2 cannot be both achieved by continuous feedback due to the
topological obstruction;

3 8 is desirable when the controller modifications imposed by the
presence of the obstacle should be as minimal as possible.

8
P. Braun, C. M. Kellett and L. Zaccarian, Unsafe point avoidance in linear state feedback, IEEE Conf. Dec. Contr., 2018.
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Control law

The control law u has three modes m ∈ {−1, 0, 1}
Stabilization mode m = 0

u = κ(x , 0) = −k0x , k0 > 0.

Avoidance mode m ∈ {−1, 1}
u = κ(x ,m) = π⊥(x − c)(−km(x − pm)), km > 0.

π⊥(z)v : projection of v onto the hyper-
plane orthogonal to z .

x1

x2 z

v

π⊥(z)v

0

pm

c

−km(x − pm)
π⊥(x − c)(− km(x − pm))

x

x1

x2

p−m
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Unsafe region for stabilization (u = −k0x)

Idea: do not flow when x is close to the obstacle and −k0x points
towards the obstacle.

This is obtained by

ε ≤ ‖x − c‖ ≤ εs
d

dt
‖x − c‖2 = −2k0x

>(x − c) ≤ 0

If the vehicle hits the safety helmet
J0 during stabilization, then the system
needs to jump to avoidance.

J0
εs

ε

0

c

c/2
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Flow and jump set for stabilization

This leads to the selection of flow and jump sets for avoidance.

J0F0

εs
ε

c/2 c/2

B‖c/2‖(c/2)

Their union covers Rn \ Bε(c).
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Flow and jump sets for avoidance: (undesired) equilibria

The control law for avoidance was

u = κ(x ,m) := −kmπ⊥(x − c)(x − pm), m ∈ {−1, 1} (♠)

Take an inflated safety helmet as preliminary flow set for avoidance

0 p1

p−1

c

The hysteresis introduced by the inflation avoids Zeno behaviour
(chattering between modes).

Equilibria of the flow map for avoidance in (♠):

π⊥(x − c)(x − pm) = 0 ⇐⇒ x ∈ L(c, pm).
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Flow and jump sets for avoidance: selection of flow sets

We then select the point pm and the flow set Fm such that

L(c, pm) ∩ Fm = ∅, m ∈ {−1, 1},

otherwise solutions can stay in the avoidance mode indefinitely.

We achieve this by taking intersection with suitable conic regions.

F−1 F1

0 p1

p−1

c
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Flow and jump sets for avoidance: selection of jump sets

F−1 F1

0 p1

p−1

c

J1J−1
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Jump map

The jump map is{
x+ = x

m+ ∈M(x ,m)
(x ,m) ∈

⋃
m∈{−1,0,1}

Jm × {m}.

The jump map specifies precisely how we select which mode through M.

F−1 F1

0 p1

p−1

c

M(x , 0) ⊆ {−1, 1}
M(x , {−1, 1}) := {0}
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Overall hybrid system

We bring all the previous
elements together:{

ẋ = κ(x ,m)

ṁ = 0

(x ,m) ∈
⋃

m∈{−1,0,1}

Fm × {m}

{
x+ = x

m+ ∈M(x ,m)

(x ,m) ∈
⋃

m∈{−1,0,1}

Jm × {m}.

J0

F−1

F1

F0

Obstacle

0 p1

p−1

c

J1

J−1
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Main result

Define the obstacle-free set K and the attractor A
K := Rn \ Bε(c)× {−1, 0, 1}, A := {0} × {0}.

Main result

For the constructed hybrid system under a suitable parameter selection,

i) all (maximal) solutions are complete in the direction of time t, and the
obstacle-free set K is forward invariant;

ii) the set A is globally asymptotically stable;

iii) ∀ε′ > ε, ∃ controller parameters so that the resulting hybrid feedback law
matches, in Rn \ Bε′(c), the nominal law u = −k0x .
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Simulations: one spherical obstacle and n = 3
Relevant sets for n = 3:

F−1, J0, Bε(c) subset of J−1, J0 F1, J0, Bε(c)
subset of J1, Bε(c)
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Simulations: one spherical obstacle and n = 3
Relevant sets for n = 3:

Stabilization and preservation: x = 0 is globally asymptotically stable,
and the control law u matches −k0x sufficiently away from the obstacle.
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Simulations: one spherical obstacle and n = 3
Relevant sets for n = 3:

Safety: distance to the obstacle ‖x − c‖, radii εs , ε

J0
εs

ε

0

c

c/2
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Extension to multiple ellipsoidal obstacles

Thanks to the preservation property, the approach is modular and can be
extended to multiple obstacles.
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Conclusions

We have proposed the construction of a hybrid system in a n-dimensional
Euclidean space for stabilization in the presence of a spherical obstacle.

The resulting closed-loop hybrid systems enjoys the properties of safety,
(robust) global asymptotic stability, and preservation.

This construction seems promising to be extended to more interesting
surfaces.

Thanks for your attention!
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