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Overview
o

A classical problem

@ Vehicle in R” (n > 2) with state x € R", control input u € R" and single
integrator dynamics:
X=u
@ Obstacle is a spherical region Bc(c) with center ¢ € R", radius ¢ > 0.

@ Avoid the obstacle while stabilizing the vehicle position to a given
reference, the origin x = 0.

X2 X=u
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Overview
L]

The topological obstruction!:2

@ The origin can not be globally asymptotically stabilized by continuous
pure state feedback in the presence of the obstacle.

% -— ? ? 7 ?
/ & N similar problem for
< dynamical systems
/. Bi(c) on spheres
0 X1 0

1D. Liberzon. Switching in systems and control, Springer, 2003.
2

R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with

applications to obstacle avoidance and regulation to disconnected sets of points. ACC, 2006.
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The topological obstruction!:2

@ The origin can not be globally asymptotically stabilized by continuous
pure state feedback in the presence of the obstacle.

% -— ? ? 7 ?
/ & N similar problem for
< dynamical systems
/. Bi(c) on spheres
0 X1 0

@ Even discontinuous pure state feedback cannot achieve global asymptotic
stability that is robust to arbitrarily small measurement noise.

1D. Liberzon. Switching in systems and control, Springer, 2003.
2

R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with

applications to obstacle avoidance and regulation to disconnected sets of points. ACC, 2006.
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Overview
L]

Motivation to use hybrid feedback

@ Here we use hysteresis switching (proposed, e.g., in %) as hybrid
mechanism to guarantee robustness.

X /

0 X1

3

R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with

applications to obstacle avoidance and regulation to disconnected sets of points. ACC, 2006.
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Overview
°

(Partial) literature survey

@ Artificial potential fields*:

> pioneering work within the robotics community;

> render the origin attractive and the obstacles repulsive;

> the vehicle navigates along the negative gradient of the artificial
potential field;

> the potential has local minima and is arbitrarily large near the
obstacles.

4O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Autonomous robot vehicles, 1986.
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Overview
°

(Partial) literature survey

@ Artificial potential fields
@ Navigation functions for spherical worlds*:

> all critical points of the artificial potential fields are saddles expect
the origin;

> extended in many directions (multi-agent systems, unknown sphere
words, etc.);

> they are theoretically guaranteed to exist, but they require a
parameter to be arbitrarily large to eliminate local minima.

4

D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds with boundary. Advances in applied mathematics,

1990.
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Overview
°

(Partial) literature survey

@ Artificial potential fields
@ Navigation functions
@ Control barrier functions®:

» control Lyapunov functions are (Lyapunov) functions that can be
made decrease by applying a suitable control, so that stabilization of
the origin is achieved;

> control barrier functions works similarly to guarantee the invariance
of a safe set.

4P. Wieland and F. Allgéwer. Constructive safety using control barrier functions. IFAC NOLCOS, 2007.

M. Z. Romdlony and B. Jayawardhana. Stabilization with guaranteed safety using control Lyapunov-barrier function. Auto-
matica, 2016.
A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic programs for safety critical
systems. IEEE Trans. Automat. Contr., 2017.
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Overview

(Partial) literature survey

Artificial potential fields
Navigation functions
Control barrier functions
Hybrid systems solutions:

> *and ® consider a planar setting (R?) ;

» 5 consider a class of linear systems in R" and an unsafe point as
obstacle.

> Using tools from higher dimensional geometry, we propose a hybrid

scheme for R" (can be extended to multiple obtacles)

4R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with
applications to obstacle avoidance and regulation to disconnected set of points. ACC, 2006.

5J. I. Poveda, M. Benosman, A. R. Teel, and R. G. Sanfelice. A hybrid adaptive feedback law for robust obstacle avoidance
and coordination in multiple vehicle systems. ACC, 2018.

6P. Braun, C. M. Kellett, and L. Zaccarian. Unsafe point avoidance in linear state feedback. CDC, 2018.
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Overview
L]

Essential ingredient: hybrid systems’

@ State equations:

x€F(x), xeF
xTeldx), xeJ (

@ Parametrize solut’s by elapsed continuous time t and number of discrete
jumps j

@ Hybrid solutions (t,j) — ¢(t,j) defined on their hybrid time domain
dom ¢

"R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical systems: modeling, stability,
and robustness. Princeton University Press 2012.
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Solution: hyb' sys' constr'n
o

Objectives

Objectives for the design of control input .

@ Safety: the obstacle-free region "
R"\ Be(c) is forward invariant;
@ Stabilization: the origin x =0 is ;\\ < e
lobally asymptotically stable;
globally asy y N B.(c)

© Preservation: for each € > ¢, there exist
controller parameters such that the
control law matches, in R" \ B./(c), the
law u = —kox (ko > 0) used in the 0 x1
absence of the obstacle.

v

o © and @ cannot be both achieved by continuous feedback due to the
topological obstruction;

@ @ 8 is desirable when the controller modifications imposed by the
presence of the obstacle should be as minimal as possible.

8P. Braun, C. M. Kellett and L. Zaccarian, Unsafe point avoidance in linear state feedback, IEEE Conf. Dec. Contr., 2018.
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Solution: hyb' sys' constr'n
L]

Control law

@ The control law u has three modes m € {—1,0,1}
@ Stabilization mode m =0
u=k(x,0) = —kox, ko> 0.

@ Avoidance mode m € {-1, 1}
u = k(x, m) = 7 (x — )(—kn(x — pm), k> 0.

@ 7> (z)v: projection of v onto the hyper-
plane orthogonal to
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Solution: hyb' sys' constr'n
o

Unsafe region for stabilization (v = —kox)

@ |dea: do not flow when x is close to the obstacle and —kox points
towards the obstacle.
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Solution: hyb' sys' constr'n
o

Unsafe region for stabilization (v = —kox)

@ |dea: do not flow when x is close to the obstacle and —kox points
towards the obstacle.

@ This is obtained by
e<|x—c| <e

%Hx — P = —2koxT(x — ) <0

18/32



Solution: hyb' sys' constr'n

Unsafe region for stabilization (v = —kox)

@ |dea: do not flow when x is close to the obstacle and —kox points
towards the obstacle.

@ This is obtained by
e<|x—c| <e

%Hx — P = —2koxT(x — ) <0

@ If the vehicle hits the safety helmet
Jo during stabilization, then the system
needs to jump to avoidance. ' c/2 !

0x
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Solution: hyb' sys' constr'n
L]

Flow and jump set for stabilization

@ This leads to the selection of flow and jump sets for avoidance.
= 5 L 5

2

@ Their union covers R" \ B.(c).
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Solution: hyb' sys' constr'n
o

Flow and jump sets for avoidance: (undesired) equilibria

@ The control law for avoidance was
u=r(x,m) = —kpn(x — c)(x — pm), me {-1,1} (»)
@ Take an inflated safety helmet as preliminary flow set for avoidance

@ The hysteresis introduced by the inflation avoids Zeno behaviour
(chattering between modes).
@ Equilibria of the flow map for avoidance in (#):
7 (x = c)(x — pm) =0 <= x € L(c, pm)-
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Solution: hyb' sys' constr'n
L]

Flow and jump sets for avoidance: selection of flow sets

@ We then select the point pn, and the flow set F,, such that
L(c,pm)NFm=0, me{-1,1}

otherwise solutions can stay in the avoidance mode indefinitely.

@ We achieve this by taking intersection with suitable conic regions.

/A
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Solution: hyb' sys' constr'n

Flow and jump sets for avoidance: selection of jump sets
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Solution: hyb' sys' constr'n
(]

Jump map

@ The jump map is

{X — ome | Tmx{mh

mt e M(x, m) me{-1,0.1}
@ The jump map specifies precisely how we select which mode through M.

[

e M(x,0) C {-1,1}
o M(x,{-1,1}) := {0}
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Solution: hyb' sys' constr'n

Overall hybrid system

@ We bring all the previous
elements together:

{ x = k(x, m)

m=0
(xmye |J Fnx{m}
me{—-1,0,1}
{m+ € M(x, m)
(xmye |J Tmx{m}.

me{—1,0,1}

[ Obstacle e
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Solution: main result
o

Main result

@ Define the obstacle-free set K and the attractor A
K :=R"\ Be(c) x {-1,0,1}, A:={0} x {0}.

Main result

For the constructed hybrid system under a suitable parameter selection,

i) all (maximal) solutions are complete in the direction of time t, and the
obstacle-free set K is forward invariant;

ii) the set A is globally asymptotically stable;

iii) Ve’ > €, 3 controller parameters so that the resulting hybrid feedback law
matches, in R" \ B./(c), the nominal law u = —kox.
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Solution: main result
o

Simulations: one spherical obstacle and n = 3

@ Relevant sets for n = 3:

F1, Jo. Be(c)  subset of J_1, Jo F1, Jo, Be(c)
» Be(c)
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Solution: main result
o

Simulations: one spherical obstacle and n = 3

@ Relevant sets for n = 3:

15 ;7 _— 05
Los 151
Ty o

0.5 -
115

1 9

@ Stabilization and preservation: x = 0 is globally asymptotically stable,
and the control law u matches —kox sufficiently away from the obstacle.
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Solution: main result
o

Simulations: one spherical obstacle and n = 3

@ Relevant sets for n = 3:

15
g1
0.5
05 ;77— 7 15
Lis o5l
T 9
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Extension to multiple ellipsoidal obstacles

@ Thanks to the preservation property, the approach is modular and can be
extended to multiple obstacles.
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Discussion
o

Conclusions

@ We have proposed the construction of a hybrid system in a n-dimensional
Euclidean space for stabilization in the presence of a spherical obstacle.

@ The resulting closed-loop hybrid systems enjoys the properties of safety,
(robust) global asymptotic stability, and preservation.

@ This construction seems promising to be extended to more interesting
surfaces.

Thanks for your attention!
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