Overview 0000000 Solution: hyb' sys' constr'n 00000000 Solution: main result

Discussion

A hybrid controller for obstacle avoidance in an *n*-dimensional Euclidean space

Soulaimane Berkane

KTH Royal Institute of Technology Division of Decision and Control Systems Stockholm, Sweden

Joint work with Andrea Bisoffi and Dimos V. Dimarogonas

A classical i	problem		
000000	00000000	00	00
Overview	Solution: hyb' sys' constr'n	Solution: main result	Discussion

Vehicle in ℝⁿ (n ≥ 2) with state x ∈ ℝⁿ, control input u ∈ ℝⁿ and single integrator dynamics:

 $\dot{x} = u$

- **Obstacle** is a spherical region $\mathcal{B}_{\epsilon}(c)$ with center $c \in \mathbb{R}^n$, radius $\epsilon > 0$.
- Avoid the obstacle while stabilizing the vehicle position to a given reference, the origin x = 0.

Overview	Solution: hyb' sys' constr'n	Solution: main result	
000000	00000000	00	00
Outline			

2 Solution: hybrid system construction

Overview	Solution: hyb' sys' constr'n	Solution: main result	
000000	00000000	00	00
Outline			

2 Solution: hybrid system construction

Overview	Solution: hyb' sys' constr'n	Solution: main result	
000000	00000000	00	00
The topologica	l obstruction ^{1,2}		

• The origin can **not** be **globally** asymptotically stabilized by **continuous** pure state feedback in the presence of the obstacle.

 Even discontinuous pure state feedback cannot achieve global asymptotic stability that is robust to arbitrarily small measurement noise.

¹D. Liberzon. Switching in systems and control, Springer, 2003.

²R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected sets of points. ACC, 2006.

Overview	Solution: hyb' sys' constr'n	Solution: main result	
000000	00000000	00	00
The topologica	al obstruction ^{1,2}		

• The origin can **not** be **globally** asymptotically stabilized by **continuous** pure state feedback in the presence of the obstacle.

• Even **discontinuous** pure state feedback cannot achieve global asymptotic stability that is **robust** to **arbitrarily small** measurement noise.

¹D. Liberzon. Switching in systems and control, Springer, 2003.

²R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected sets of points. ACC, 2006.

Overview	Solution: hyb' sys' constr'n	Solution: main result	Discussion
Motivation to	use hybrid feedbac	k	
• Here we use mechanism	e hysteresis switching (prop to guarantee robustness.	posed, e.g., in 3) as hybri	d

³ R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected sets of points. ACC, 2006.

(Partial)	literature survey		
0000000	00000000	00	00
Overview	Solution: hyb' sys' constr'n	Solution: main result	

- Artificial potential fields⁴:
 - pioneering work within the robotics community;
 - render the origin attractive and the obstacles repulsive;
 - the vehicle navigates along the negative gradient of the artificial potential field;
 - the potential has local minima and is arbitrarily large near the obstacles.

⁴O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Autonomous robot vehicles, 1986.

(Partial) literature survey		
0000000	00000000	00	00
Overview	Solution: hyb' sys' constr'n	Solution: main result	

- Artificial potential fields
- Navigation functions for spherical worlds⁴:
 - all critical points of the artificial potential fields are saddles expect the origin;
 - extended in many directions (multi-agent systems, unknown sphere words, etc.);
 - they are theoretically guaranteed to exist, but they require a parameter to be arbitrarily large to eliminate local minima.

⁴D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds with boundary. Advances in applied mathematics, 1990.

(Partial) lit	cerature survev		
0000000	00000000	00	00
Overview	Solution: hyb' sys' constr'n	Solution: main result	

- Artificial potential fields
- Navigation functions
- Control barrier functions⁴:
 - control Lyapunov functions are (Lyapunov) functions that can be made decrease by applying a suitable control, so that stabilization of the origin is achieved;
 - control barrier functions works similarly to guarantee the invariance of a safe set.

⁴P. Wieland and F. Allgöwer. Constructive safety using control barrier functions. IFAC NOLCOS, 2007.

M. Z. Romdlony and B. Jayawardhana. Stabilization with guaranteed safety using control Lyapunov-barrier function. Automatica, 2016.

A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic programs for safety critical systems. IEEE Trans. Automat. Contr., 2017.

(Partial) lit	erature survev		
0000000	00000000	00	00
Overview	Solution: hyb' sys' constr'n	Solution: main result	

- Artificial potential fields
- Navigation functions
- Control barrier functions
- Hybrid systems solutions:
 - ⁴ and ⁵ consider a planar setting (\mathbb{R}^2) ;
 - ⁶ consider a class of linear systems in \mathbb{R}^n and an unsafe point as obstacle.
 - ► Using tools from higher dimensional geometry, we propose a hybrid scheme for ℝⁿ (can be extended to multiple obtacles)

⁴R. G. Sanfelice, M. J. Messina, S. E. Tuna, and A. R. Teel. Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected set of points. ACC, 2006.

⁵J. I. Poveda, M. Benosman, A. R. Teel, and R. G. Sanfelice. A hybrid adaptive feedback law for robust obstacle avoidance and coordination in multiple vehicle systems. ACC, 2018.

⁶P. Braun, C. M. Kellett, and L. Zaccarian. Unsafe point avoidance in linear state feedback. CDC, 2018.

Essential ingre	dient: hybrid systems		
The second second		7	
000000	00000000	00	00
Overview	Solution: hyb' sys' constr'n	Solution: main result	Discussion

State equations:

$$egin{cases} \dot{x} \in \mathbf{F}(x), & x \in \mathcal{F} \ x^+ \in \mathbf{J}(x), & x \in \mathcal{J} \end{cases}$$

- Parametrize solut's by elapsed continuous time *t* and number of discrete jumps *j*
- Hybrid solutions $(t,j) \mapsto \phi(t,j)$ defined on their hybrid time domain dom ϕ

⁷R. Goebel, R. G. Sanfelice, and A. R. Teel, *Hybrid dynamical systems: modeling, stability, and robustness.* Princeton University Press 2012.

	Solution: hyb' sys' constr'n	Solution: main result	
Outline			

Overvie 0000	w Sol	ution: hyb' sys' constr'n	Solution: m		Discussion 00
Ob	jectives				
	Objectives for the d	esign of control inp	ut u x2	$\dot{\mathbf{x}} = \mathbf{u}$	
	3 Safety: the ob $\mathbb{R}^n \setminus \mathcal{B}_\epsilon(c)$ is f	ostacle-free region orward invariant;			

- Stabilization: the origin x = 0 is globally asymptotically stable;
- Preservation: for each ε' > ε, there exist controller parameters such that the control law matches, in ℝⁿ \ B_{ε'}(c), the law u = -k₀x (k₀ > 0) used in the absence of the obstacle.

- • and cannot be both achieved by continuous feedback due to the topological obstruction;
- • * is desirable when the controller modifications imposed by the presence of the obstacle should be as minimal as possible.

⁸P. Braun, C. M. Kellett and L. Zaccarian, Unsafe point avoidance in linear state feedback, IEEE Conf. Dec. Contr., 2018.

Overview 0000000	Solution: hyb' sys' constr'n ○●○○○○○○○	Solution: main result 00	Discussion OO
Control law			
• The contro	l law <i>u</i> has three modes	$m\in\{-1,0,1\}$	
 Stabilizatio 	on mode $m = 0$ $u = \kappa(x, 0) =$	$=-k_0x, k_0>0.$	
Avoidance	mode $m \in \{-1, 1\}$ $u = \kappa(x, m) = \pi^{\perp}(x - c)$	$c)(-k_m(x-p_m)), k_m > 0.$	
• $\pi^{\perp}(z)v$: proplane orthomorphic	rojection of v onto the hy ogonal to z .	/per-	z

Overview 0000000	Solution: hyb' sys' cons	tr'n S	olution: main result DO	Discussion 00
Contro	l law			
•	The control law u has three Stabilization mode $m = 0$ u = 0	we modes $m \in \{-1$ $\kappa(x,0) = -k_0 x,$	$\{0, 0, 1\}$ $k_0 > 0.$	
۹	Avoidance mode $m \in \{-1$ $u = \kappa(x, m) =$	$,1$ } $\pi^{\perp}(x-c)(-k_m(x-c))$	$(-p_m)), k_m > 0.$	
۰	$\pi^{\perp}(z)v$: projection of v or plane orthogonal to z .	ito the hyper-	$x_1^{\perp}(z)v$	
	×2 0	$ \begin{array}{c} \pi^{\perp}(x-c)(-k_m(x-c)) \\ -k_m(x-p_m) \\ x \\ -m \\ p_m \end{array} $	- p _m))	

0000000	Solution: hyb sys constrin	Solution: main result	OO
Unsafe region	for stabilization ($u =$	$-k_0 x)$	

Idea: do not flow when x is close to the obstacle and -k₀x points towards the obstacle.

Overview	Solution: hyb' sys' constr'n	Solution: main result	Discussion
0000000		00	OO
Unsafe region	for stabilization (<i>u</i>	$=-k_0x$)	

- Idea: do not flow when x is close to the obstacle and -k₀x points towards the obstacle.
- This is obtained by

$$\epsilon \leq \|x - c\| \leq \epsilon_s$$
$$\frac{\mathrm{d}}{\mathrm{dt}} \|x - c\|^2 = -2k_0 x^\top (x - c) \leq 0$$

Uncofo region	for stabilization (u -		00
Overview	Solution: hyb' sys' constr'n	Solution: main result	Discussion

- Idea: do not flow when x is close to the obstacle and -k₀x points towards the obstacle.
- This is obtained by

$$\epsilon \le \|x - c\| \le \epsilon_s$$

 $\frac{\mathrm{d}}{\mathrm{dt}} \|x - c\|^2 = -2k_0 x^\top (x - c) \le 0$

 If the vehicle hits the safety helmet *J*₀ during stabilization, then the system needs to jump to avoidance.

	Solution: hyb' sys' constr'n	Solution: main result	
0000000	0000000	00	00
Flow and	iump set for stabiliza	ation	

• This leads to the selection of flow and jump sets for avoidance.

• Their union covers $\mathbb{R}^n \setminus \mathcal{B}_{\epsilon}(c)$.

Overview 0000000	Solution: hyb' sys' constr'n	Solution: main result 00	Discussion
Flow and jump	sets for avoidance: ((undesired) e	quilibria

• The control law for avoidance was

$$u = \kappa(x, m) := -k_m \pi^{\perp}(x - c)(x - p_m), \quad m \in \{-1, 1\}$$
 (A)

• Take an inflated safety helmet as preliminary flow set for avoidance

- The hysteresis introduced by the inflation avoids Zeno behaviour (chattering between modes).
- Equilibria of the flow map for avoidance in (\bigstar): $\pi^{\perp}(x-c)(x-p_m) = 0 \iff x \in \mathcal{L}(c, p_m).$

Overview		Solution: hyb' sys' con	nstr'n	Solution: main result		
0000000		000000000		00		00
Flow	and jump	sets for	avoidance:	selection	of flow set	s

• We then select the point p_m and the flow set \mathcal{F}_m such that

$$\mathcal{L}(c,p_m)\cap\mathcal{F}_m=\emptyset,\quad m\in\{-1,1\},$$

otherwise solutions can stay in the avoidance mode indefinitely.

• We achieve this by taking intersection with suitable conic regions.

Overview 0000000 Solution: hyb' sys' constr'n

Solution: main resul

Flow and jump sets for avoidance: selection of jump sets

	Solution: hyb' sys' constr'n	Solution: main result	
	000000000		
Jump map			

• The jump map is

$$\begin{cases} x^+ = x \\ m^+ \in \mathbf{M}(x,m) \end{cases} \quad (x,m) \in \bigcup_{m \in \{-1,0,1\}} \mathcal{J}_m \times \{m\}.$$

• The jump map specifies precisely how we select which mode through M.

- $M(x, 0) \subseteq \{-1, 1\}$
- $M(x, \{-1, 1\}) := \{0\}$

	Solution: hyb' sys' constr'n	
	00000000	
Overall hybrid	system	

 \mathcal{F}_{-1} Obstacle

• We bring all the previous
elements together:
$$\begin{cases} \dot{x} = \kappa(x, m) \\ \dot{m} = 0 \\ (x, m) \in \bigcup_{m \in \{-1, 0, 1\}} \mathcal{F}_m \times \{m\} \\ \\ \begin{cases} x^+ = x \\ m^+ \in \mathbf{M}(x, m) \\ (x, m) \in \bigcup \quad \mathcal{J}_m \times \{m\}. \end{cases}$$

 $m \in \{-1,0,1\}$

 \mathcal{J}_0 $\square \mathcal{F}_0$ hand - *F*1 , _____ J1

	Solution: hyb' sys' constr'n	Solution: main result	
0000000	00000000	00	00
Outline			

2 Solution: hybrid system construction

Overview	Solution: hyb' sys' constr'n	Solution: main result	Discussion
0000000	000000000	●○	00
Main result			

• Define the obstacle-free set \mathcal{K} and the attractor \mathcal{A} $\mathcal{K} := \overline{\mathbb{R}^n \setminus \mathcal{B}_{\epsilon}(c)} \times \{-1, 0, 1\}, \quad \mathcal{A} := \{0\} \times \{0\}.$

Main result

For the constructed hybrid system under a suitable parameter selection,

- i) all (maximal) solutions are complete in the direction of time t, and the obstacle-free set K is forward invariant;
- ii) the set \mathcal{A} is globally asymptotically stable;
- iii) $\forall \epsilon' > \epsilon, \exists$ controller parameters so that the resulting hybrid feedback law matches, in $\mathbb{R}^n \setminus \mathcal{B}_{\epsilon'}(c)$, the nominal law $u = -k_0 x$.

28 / 32

• Stabilization and preservation: x = 0 is globally asymptotically stable, and the control law u matches $-k_0x$ sufficiently away from the obstacle.

• **Safety**: distance to the obstacle ||x - c||, radii ϵ_s , ϵ

 x_2

 x_1

 x_1

 x_1

 x_2

Extension to multiple ellipsoidal obstacles

• Thanks to the **preservation** property, the approach is modular and can be extended to multiple obstacles.

Overview 0000000	Solution: hyb' sys' constr'n 000000000	Solution: main result	Discussion
Conclusions			

- We have proposed the construction of a hybrid system in a *n*-dimensional Euclidean space for stabilization in the presence of a spherical obstacle.
- The resulting closed-loop hybrid systems enjoys the properties of safety, (robust) global asymptotic stability, and preservation.
- This construction seems promising to be extended to more interesting surfaces.

Thanks for your attention!