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Introduction

Research Interests (Applications)

» Navigation and Control of Unmanned Vehicles
» Cooperative Localization for Autonomous Vehicles
» Multi-Robot Systems Coordination & Task Planning
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Outline

Systems with Constraints
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Systems with Constraints
Consider the system dynamics

x = f(x,u) xeX, uveld
y = h(x) yey
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Systems with Constraints

State-Space Constraints

Example

» Real constraint Rigid link

x=rtoyu N

sth. h(x) == 1 — xx'.

X =5
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Systems with Constraints

State-Space Constraints

Example

» Real constraint
x =7t (x)u

sth. mH(x) == 1 — xx".

» Design constraint

Rigid link

X=s"

X =sr

7/51



Systems with Constraints

Control of Systems with State-Constraints

Consider the constrained system

x = f(x,u) xeX

Objective (Control)

Design a control law u(-) such that x = 0 is a globally
asymptotically (exponentially) stable equilibrium.
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Systems with Constraints
Observer Design for Systems with State-Constraints
Consider the dynamical system
x = f(x,u) xekX
y = h(x)

Objective (Estimation)

Design an estimation law for X such that x — X = 0 a globally
asymptotically (exponentially) stable equilibrium and

ReX DX, for all times.

= X strictly constrained estimation
D X constrained estimation

vV vvY
e

= R": non-constrained estimation
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Outline

Topological Incompatibility
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Topological Incompatibility

State-Space vs. Control Objective
Let f € C1(R") and

x=f(x), xeX (1)

'F. W. Wilson (1967). The structure of the level surfaces of a Lyapunov
function.Journal of Differential Equations.

11/51



Topological Incompatibility

State-Space vs. Control Objective

Let f € C1(R") and

x=f(x), xeX (1)

Fact (Theorem 2.2 from 1)

The domain of asymptotic stability of any critical point of (1) is
diffeomorphic to R™ for some m > 0.

'F. W. Wilson (1967). The structure of the level surfaces of a Lyapunov
function.Journal of Differential Equations.
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Topological Incompatibility

State-Space vs. Control Objective

Let f € C1(R") and

x=f(x), xeX (1)

The domain of asymptotic stability of any critical point of (1) is
diffeomorphic to R™ for some m > 0.

Corollary

If X and R™ are not topologically equivalent (not the same
“shape”) then global asymptotic stability is not possible.

'F. W. Wilson (1967). The structure of the level surfaces of a Lyapunov
function.Journal of Differential Equations.
11/51



Topological Incompatibility

State-Space vs. Control Objective

Example (Non-simply connected X))

» X =R"\ O is non-simply connected '

; x(t)
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Topological Incompatibility

State-Space vs. Control Objective

Example (Non-simply connected X))

» X =R"\ O is non-simply connected

> R™ is simply connected Vm

x(t)

Corollary

Topological obstruction to GAS on non-simply connected spaces.
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Topological Incompatibility

State-Space vs. Control Objective
Example (Non-contractible X")

» Compact manifolds are non-contractible

2 M is contractible if there exists a continuous map h: M x [0,1] — M
and xp € M such that h(x,0) = x and h(x, 1) = xo for all x € M.
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2 M is contractible if there exists a continuous map h: M x [0,1] — M
and xp € M such that h(x,0) = x and h(x, 1) = xo for all x € M.
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Topological Incompatibility

State-Space vs. Control Objective

Example (Control on St)

» Kinematics on St

X1 = —WXo
X2 = wxi
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Topological Incompatibility

State-Space vs. Control Objective

Example (Control on S')

» Kinematics on St

x| = —Wwxp
X0 = wxy
» Smooth Controller x
w=—kx», k>D0. //.
Undesired Desired
equilibrium ‘/ equilibrium
—ey erJ X1
\v»- i




Topological Incompatibility

State-Space vs. Control Objective

Example (Control on St)

» Kinematics on St
).(1 = —WX2
X2 = wxi

» Discontinuous Controller

w = —sign(xy) arccos(x1)
with
(%) 1 x>0
sign(xp) :=
& 2 -1 x <0
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Topological Incompatibility

State-Space vs. Control Objective

If a compact set can not be globally asymptotically stabilized by
continuous feedback then it can not be robustly asymptotically
globally stabilized by discontinuous feedback either.

*Mayhew, C. G., and Teel, A. R. (2011). On the topological structure of
attraction basins for differential inclusions. Systems & Control Letters, 60(12),
1045-1050.
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Topological Incompatibility

State-Space vs. Control Objective

If a compact set can not be globally asymptotically stabilized by
continuous feedback then it can not be robustly asymptotically
globally stabilized by discontinuous feedback either.

= We need either:
» Hybrid Feedback
» Time-Varying Feedback

*Mayhew, C. G., and Teel, A. R. (2011). On the topological structure of
attraction basins for differential inclusions. Systems & Control Letters, 60(12),
1045-1050.
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Topological Incompatibility

State-Space vs. Control Objective

If a compact set can not be globally asymptotically stabilized by
continuous feedback then it can not be robustly asymptotically
globally stabilized by discontinuous feedback either.

= We need either:
» Hybrid Feedback
» Time-Varying Feedback (open problem)

*Mayhew, C. G., and Teel, A. R. (2011). On the topological structure of
attraction basins for differential inclusions. Systems & Control Letters, 60(12),
1045-1050.

15 /51



Outline

Hybrid Systems Framework
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Hybrid Systems Framework

x € F(x) xeF
xt e J(x) xeJ

» state: x ¢ R”
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Hybrid Systems Framework

x € F(x) xeF
xt € J(x) xeJ

» state: x ¢ R”

v

flow map: F: R" = R”
flow set: F C R"

v
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Hybrid Systems Framework

x € F(x) xeF
xt € J(x) xeJ

» state: x ¢ R”

v

flow map: F: R" = R”
flow set: F C R"

v

> jump map: J: R" = R”
jump set: 7 CR”"

v
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Hybrid Systems Framework
Hybrid Time Domains

x €F(x) x e F
xt e J(x) xeJ
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Hybrid Systems Framework
Hybrid Time Domains

x €F(x) x e F
xT e J(x) xeJ

Hybrid time domain

(t,j)GHgRZ()XN

» t: amount of time passed

> j: number of jumps occurred
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Hybrid Systems Framework
Hybrid Time Domains

x €F(x) x e F
xT e J(x) xeJ

Hybrid time domain

(t,j)GHgRZ()XN

» t: amount of time passed

|

> j: number of jumps occurred 1




Hybrid Systems Framework

Motivation Example on S!

» Kinematics on St
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Hybrid Systems Framework

Motivation Example on S!

» Kinematics on St

x = S(w)x

x === Controller x1(x)

Let g € {1,2} and ¢, € Cq C S

mmm  Controller ria(x)

X1
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Hybrid Systems Framework

Motivation Example on S!

» Kinematics on St

x = S(w)x

x === Controller x1(x)

Let g € {1,2} and ¢, € Cq C S

mmm  Controller ria(x)

x = 5(kq(x))x XGW

+
X =X X1
x €Cq

19 /51
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Control Examples
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Hybrid Attitude Stabilization on SO(3)

Problem Formulation

Consider the attitude kinematics
R = R[w]x, R(0) € SO(3)

where R is the attitude and w € R3 is the angular velocity.
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Hybrid Attitude Stabilization on SO(3)

Problem Formulation

Consider the attitude kinematics
R = R[w]x, R(0) € SO(3)

where R is the attitude and w € R3 is the angular velocity.

Design w such that R = I3 is
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Hybrid Attitude Stabilization on SO(3)

Potential Functions

» g € Qis a discrete variable (controller mode)

®(R, q) is a potential function if 0

- Continuous

- Continuously differentiable on
D CS0O(3) x Q

- Positive definite w.r.t {/} x Q
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Hybrid Attitude Stabilization

Exp-synergistic Potential Functions

» F:={(R,q): ®(R,q) — minpeco ®(R, m) < 4}
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Hybrid Attitude Stabilization

Exp-synergistic Potential Functions
> F:={(R,q) : ®(R,q) — minmeg ®(R, m) < 6}

® is exp-synergistic with gap exceeding § > 0 iff:

a1|R|7 < ®(R,q) < az|R|?  Y(R,q) €SO(3) x Q
a3|R[} <[IVO(R,q)|F < aalR[] V(R q)€F
FCD

» Both ® and V& are quadratic in |R|; := ||/ — R||r/V/8

» Possible singular/critical points are outside the flow set F

23 /51



Hybrid Attitude Stabilization
Synergistic Hybrid Feedback
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Hybrid Attitude Stabilization

Synergistic Hybrid Feedback
» Hybrid controller

w=—(R"V®(R,q))"

G=0 (R.q) e F
g €arg m€i5¢(R, m) (R,q)eJ
SO(3) x Q
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Hybrid Attitude Stabilization

Synergistic Hybrid Feedback
» Hybrid controller
W= _(RTVCD(R: q))\/
G=0 (R.q) e F
gt € arg migCD(R, m) (R,q) eJ
me

Theorem

If ® is exp-synergistic with gap
exceeding & then the set {I} x Q
is globally exponentially stable.

SO(3) x Q
24 /51



Hybrid Attitude Stabilization

Construction of exp-synergistic potential functions
For example*®, consider

V(R) :=tr(A(l = R)), A=A">0.
Consider the map (angular warping2)

F(R,q) := Rexp(0(R, q)[u(q)]x)

*Berkane, S., Abdessameud, A., and Tayebi, A. (2017). Hybrid global
exponential stabilization on SO(3). Automatica, 81, 279-285.

®Berkane, S., Abdessameud, A., and Tayebi, A. (2018). Hybrid Output
Feedback For Attitude Tracking on SO(3). IEEE Transactions on Automatic
Control.
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Hybrid Attitude Stabilization

Construction of exp-synergistic potential functions
For example*®, consider

VU(R):=tr(A(/ - R)), A=A >0.
Consider the map (angular warping2)

F(R,q) := Rexp(0(R, q)[u(q)]x)

Theorem

Under some suitable (R, q) and u(q), the potential function W o T
is exp-synergistic with a given gap 6.

*Berkane, S., Abdessameud, A., and Tayebi, A. (2017). Hybrid global
exponential stabilization on SO(3). Automatica, 81, 279-285.

®Berkane, S., Abdessameud, A., and Tayebi, A. (2018). Hybrid Output

Feedback For Attitude Tracking on SO(3). IEEE Transactions on Automatic
Control.
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Obstacle Avoidance Problem

o 0
Target stat Initial state
0
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Obstacle Avoidance Problem

» Artificial potential fields
suffer from local minima -
= Cony ()
Target stat Initial state

0
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Obstacle Avoidance Problem

» Artificial potential fields

suffer from local minima -

» Navigation functions are not .
; z(0
correct-by-construction Targer “~ Imgial) e

(require tuning) 0

26 /51



Obstacle Avoidance Problem

» Artificial potential fields
suffer from local minima

» Navigation functions are not .

correct-by-construction t‘ 2(0)

Target st Initial state

(require tuning) B
» Resulting feedback is

strongly invasive ‘
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Obstacle Avoidance via Hybrid Feedback

Problem Formulation

Consider the dynamics
x=u, x(0)eR"\O

with the objective to globally asymptotically stabilize x = 0 while
avoiding the obstacle

S

4

,,,75,,,

O:={xeR": |x—c|| <el. -
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Obstacle Avoidance via Hybrid Feedback

Control Input

The control law has three modes

—koX, m =
—kpmt(x — )(x — pm), me€{-1,1}

u=k(x,m):= {
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Obstacle Avoidance via Hybrid Feedback

Control Input

The control law has three modes

—koX, m =
—kpmt(x — )(x — pm), me€{-1,1}

u=k(x,m):= {

» Stabilization mode (m = 0)
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Obstacle Avoidance via Hybrid Feedback

Control Input

The control law has three modes

_k0X7 m=20
—kpmt(x — )(x — pm), me€{-1,1}

u=k(x,m):= {

» Stabilization mode (m = 0)

» Avoidance modes (m = —1,1) guarantee that

dllx —c|? _

™ —km(x = )Tt (x = c)(x = pm) =0

= safe avoidance

28 /51



Obstacle Avoidance via Hybrid Feedback

Construction of the Stabilization Flow and Jump Sets

Under the feedback —kpx, what is the unsafe region?
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Obstacle Avoidance via Hybrid Feedback

Construction of the Stabilization Flow and Jump Sets
Under the feedback —kgx, what is the unsafe region?

R
dHthCH = 2kox | (x —¢) <0 <= |x —c/2|* > |Ic/2|?.
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Obstacle Avoidance via Hybrid Feedback

Construction of the Stabilization Flow and Jump Sets

Under the feedback —kgx, what is the unsafe region?

2
dllxdtcll = 2koxT(x— ¢) <0 = |x — /2|2 > ||c/2|2.
N/
ey \\§
Jo: safety helmet @\
S B S

We need to jump to the
avoidance mode when x € Jy

ox

29 /51



Obstacle Avoidance via Hybrid Feedback

Construction of the Stabilization Flow and Jump Sets

Stabilization flow set Fy and jump set Jo

A 0 %

\
1
1
I
'
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Obstacle Avoidance via Hybrid Feedback

Construction of the Avoidance Flow and Jump Sets

> p1, p—1 are auxiliary
attractive points

» The equilibria of the
avoidance mode lie in the
jump sets Jpp,m=—1,1 =

31/51



Obstacle Avoidance via Hybrid Feedback

Closed-Loop Hybrid Dynamical System

{*:“‘W xmye |J Faxim (2

{X+:X eme U Tnxim. @)
. X, m m X My
m* € M(x, m) me{-1,0,1}
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Obstacle Avoidance via Hybrid Feedback

Closed-Loop Hybrid Dynamical System

(xme | Fax{m} (2

m=20

{ x = k(x, m)

me{-1,0,1}

{X+:X eme U Tnxim. @)
. X, m m X My

m™ € M(x, m) me{-1,0,1}

» (Safety) (R"\ O) x {—1,0,1} is forward invariant
» (Convergence) {0} x {0} is globally asymptotically stable

» (Preservation) there exist controller parameters such that u
matches —kox almost everywhere

32/51



Obstacle Avoidance via Hybrid Feedback

Simulation (3D scenario)

1.5
g1
0.5
Los 151
X1 T2

Figure 1: 1 (blue), Jo (red) and obstacle (gray)
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Obstacle Avoidance via Hybrid Feedback

Simulation (3D scenario)

1.5
g1
0.5
05 7 1 15
115 051
T i)

Figure 1. F_1 (green), Jo (red) and obstacle (gray)

33/51



Obstacle Avoidance via Hybrid Feedback

Simulation (3D scenario)

Figure 1: Different trajectories
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Obstacle Avoidance via Hybrid Feedback

» Preliminary work for single spherical obstacle ©

» We have extensions to multiple ellipsoid-shaped obstacles’

Target state‘ Inltlal state

6S. Berkane, A. Bisoffi and D. V. Dimarogonas, “A Hybrid Controller for
Obstacle Avoidance in the n—Dimensional Euclidean Space”, submitted to
European Control Conference, 2019.

7 Journal extension in preparation.
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Estimation Examples
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Observer Design for Systems with State-Constraints

Objective (Estimation)

Design an estimation law for X such that x — X = 0 is globally
asymptotically stable and

A

xe X DX forall times.

» X=X strictly constrained estimation
» X O X: constrained estimation
» X = R" non-constrained estimation
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Observer Design for Systems with State-Constraints

Objective (Estimation)

Design an estimation law for X such that x — X = 0 is globally
asymptotically stable and

ReX D X for all times.

» U= strictly constrained estimation
» X O X: constrained estimation
» X = R" non-constrained estimation
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Hybrid Attitude Estimation on SO(3)

Problem Formulation
Consider the attitude kinematics:

with vector measurements on S2:

bi =R' a
~— ~—
measured known
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Hybrid Attitude Estimation on SO(3)

Problem Formulation
Consider the attitude kinematics:

with vector measurements on S2:

bi =R' a
~— ~—
measured known

Estimate the rotation matrix R using gyro readings of w and

vector measurements by, - - - , b, with global exponential stability
of the estimation error.

37/51



Hybrid Attitude Estimation on SO(3)

Explicit Complementary Filter (ECF)

» Attitude estimation

A

R=Rlw+olx, R(0)eSO®3)
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» Attitude estimation

A

R=Rlw+olx, R(0)eSO®3)

» Strictly constrained since R(t) € SO(3) for all times.

» Cost function

1< -
§Z||bi — R
i=1
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Hybrid Attitude Estimation on SO(3)

Explicit Complementary Filter (ECF)

» Attitude estimation

A

R=Rlw+olx, R(0)eSO®3)

» Strictly constrained since R(t) € SO(3) for all times.

» Cost function

1o R . n R
5 Z ||bl _ RTaiH2 - gradient o= Z,Oi(bi > RTB;)
i=1 i=1
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Hybrid Attitude Estimation on SO(3)

Explicit Complementary Filter (ECF)

» Attitude estimation

A

R=Rlw+olx, R(0)eSO®3)

» Strictly constrained since R(t) € SO(3) for all times.

» Cost function

1o R . n R
5 Z ||bl _ RTai“2 - gradient o= Z,Oi(bi > RTa,-)
i=1 i=1

Theorem (R. Mahony & T. Hamel)

Almost global asymptotic stability and local exponential stability.

38 /51



Hybrid Attitude Estimation on SO(3)

Motivation on S!

X2

0° X1

wdh
/
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Hybrid Attitude Estimation on SO(3)

Motivation on S*

0° X1

» State reset: & = R(A)X

» Causes estimation error to decrease

39 /51



Hybrid Attitude Estimation on SO(3)

Motivation on S!

 — Jump set

X2 —3 Flow set

S
Attitude

Attitude after (few) jump

before jump

180 R

39 /51



Hybrid Attitude Estimation on SO(3)

Reset-based approach

» Attitude estimation

R = Rlw + o]«
R™ = R(Quq)R
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Hybrid Attitude Estimation on SO(3)

Reset-based approach
» Attitude estimation
R™ = R(Quq)R

» |nnovation

(Cost function) ®((b))1...n, R) ~£77" ¢ = W((bi)1...n, R)
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Hybrid Attitude Estimation on SO(3)

Reset-based approach

» Attitude estimation

R = Rlw + o]y ((b)1...
R™ = R(Quq)R ((b)1...

» |nnovation

(Cost function) ®((b))1...n, R) ~£77" ¢ = W((bi)1...n, R)

» Flow and jump sets

F = {8(-, R) — min (-, R(9ug)R) < 5}
J ={®(,R) - min ®(-,R(uqg)R) > 6}
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Hybrid Attitude Estimation on SO(3)

Reset-based approach

» Attitude estimation

R = Rlw + o]« ((b7)1.n
R™ = R(Quq)R ((b1)1.m, R)

» |nnovation

(Cost function) ®((b))1...n, R) ~£77" ¢ = W((bi)1...n, R)

» Flow and jump sets
F = {®(,R) — min®(-,R(Guy)R) < 4}
J = {®(-, R) — min ®(-,R(Buy)R) > 6}

> § € R and g = arg min (-, R(Aug)R).

40 /51



Hybrid Attitude Estimation on SO(3)

Reset-based approach

Theorem (S. Berkane, PhD thesis 2017)

If we have
1. s quadratic
2. ||V<f>\|f_— is quadratic on the flow set F
3. singular points of ® lie in the jump set J

then the zero estimation error is globally exponentially stable.
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Hybrid Attitude Estimation on SO(3)

Reset-based approach

Theorem (S. Berkane, PhD thesis 2017)

If we have
1. s quadratic
2. ||V<f>\|f_— is quadratic on the flow set F
3. singular points of ® lie in the jump set J

then the zero estimation error is globally exponentially stable.

Example

> Take & =37, pillbi — RT ail?
» Pick 0 =mand 0 <0 < Af'+ A5 with A=3Y"" | piaja;

» Pick {u1, up, u3} be an orthonormal set of eigenvectors of A

41 /51



Hybrid Attitude Estimation on SO(3)

» Attitude + gyro bias®: synergistic-based approach

» GPS-aided®: reset-based approach

» Full state!®: attitude and angular velocity estimation,
synergistic-based approach

» Intermittent measurements!!: sensors with different
sampling

8Berkane, S., Abdessameud, A., & Tayebi, A. (2017). Hybrid Attitude and
Gyro-Bias Observer Design on SO(3). IEEE TAC.

Berkane, S. and Tayebi, A. (2017). Attitude and gyro bias estimation using
GPS and IMU measurements. |[EEE CDC.

Berkane, S., Abdessameud, A., & Tayebi, A. (2018). Hybrid Output
Feedback For Attitude Tracking on SO (3). IEEE TAC.

"Berkane, S. and Tayebi, A. (2018). Attitude Estimation with Intermittent
Measurements. Automatica.
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Observer Design for Systems with State-Constraints

Objective (Estimation)

Design an estimation law for X such that x — X = 0 is globally
asymptotically stable and

A

xe X DX forall times.

» X=X strictly constrained estimation
» X O X: constrained estimation
» X = R" non-constrained estimation
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Observer Design for Systems with State-Constraints

Objective (Estimation)
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asymptotically stable and

A

xe X DX forall times.

» X=X strictly constrained estimation
» X O X: constrained estimation
» X = R" non-constrained estimation
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Hybrid Constrained Estimation For LTV Systems

System Model
Consider the LTV system

x = A(t)x + B(t)u(t)
y = C(t)x
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System Model
Consider the LTV system

x = A(t)x + B(t)u(t)
y = C(t)x

» x is constrained to evolve on the set

D(t,y) ={x e R": D(t,y)x =d(t,y)}

-
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Estimation Objective

Design an estimator for % s.th. % € Q(t,y) D D(t, y) for all times.

(t,y)

O, y){
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Hybrid Constrained Estimation For LTV Systems

Estimation Objective

Design an estimator for % s.th. % € Q(t,y) D D(t, y) for all times.

Q(t,y)

» (Part of) the output equation C(t)x = y can be used as a
constraint in D(t,y)x = d(t,y).
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Proposed Hybrid Observer

We propose the following hybrid observer:

=A%+ B(t)u(t) + K(t)(y — C(t)%), %€ F(t,y)
£ = Ppey)(R), xe€J(t,y)
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Proposed Hybrid Observer

We propose the following hybrid observer:

=A%+ B(t)u(t) + K(t)(y — C(t)%), %€ F(t,y)
£ = Ppey)(R), xe€J(t,y)

» K(t): from a Riccati equation.

» Pp(X): projection operator on DX = d given by
Pp(%) :=% — PD"(DPD")"}(D% — d)

for some positive definite matrix P.
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Design of the Flow and Jump Sets

» (Objective): F(t,y) C Q(t y)
» (Complete): dist(J(t,y), D(t,y)) >0
» (Global): F(t,y)U J(t,y) =R"
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Hybrid Constrained Estimation For LTV Systems

Design of the Flow and Jump Sets

» (Objective): F(t,y) C Q(t y)
» (Complete): dist(J(t,y),D(t,y)) >0
» (Global): F(t,y)UJ(t,y)=R"

Global exponential stability of the zero estimation error.
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Hybrid Constrained Estimation For LTV Systems

Simulation Scenario

Simulation (A vehicle moving on a road with angle 0)

Let
XZB ﬂx+ﬂum
y=[ 0x

ot

which leads to the constraint

[sin() —cos(d) O O]Tx(t):O.
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Hybrid Constrained Estimation For LTV Systems

Simulation Scenario
Simulation (A vehicle moving on a road with angle 0)
» Objective set
Q={%eR*: [sin(d)% — cos(B)%| < u}.
> Flow set
F={2eR*:|sin(h)% — cos(f)%a| < €}.
» Jump set
J = {% e R*: |sin(0)%1 — cos(h)Ra| > €.

with 0 < e < p.
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Simulation Scenario

Simulation (A vehicle moving on a road with angle 0)

VIaVIC
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Conclusion

» Systems with constraints present topological difficulties

» Hybrid systems tools are promising for the control &
estimation of systems with constraints

» Future work needed for complex and multirobotic systems
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