Hybrid Control and Estimation for Systems with Constraints

Soulaimane Berkane

Department of Automatic Control

KTH Royal Institute of Technology

Introduction

Academic Career

► Ecole National Polytechnique (ENP), Algeria

- Engineer (Automation & Control)
- M.Sc. (Automatic Control)

University of Western Ontario (UWO), Canada

- Ph.D. (Robotics & Control) (2014-2017)
- Post-Doc (Prof. A. Tayebi) (7 months, 2018)

KTH Royal Institute of Technology, Sweden

► **Post-Doc** (Prof. D. V. Dimarogonas) (2018-Current)

(2008 - 2013)

(2011 - 2013)

Introduction

Research Interests (Theory)

- Hybrid Dynamical Systems
- Systems with Constraints
- Multiagent Systems
- Formal Verification Methods

Introduction

Research Interests (Applications)

- Navigation and Control of Unmanned Vehicles
- Cooperative Localization for Autonomous Vehicles
- Multi-Robot Systems Coordination & Task Planning

Outline

Systems with Constraints

Topological Incompatibility

Hybrid Systems Framework

Control Examples

Estimation Examples

Consider the system dynamics

$$\dot{x} = f(x, u)$$
 $x \in \mathcal{X}, u \in \mathcal{U}$
 $y = h(x)$ $y \in \mathcal{Y}$

state-space constraints

$$\mathcal{X} \subset \mathbb{R}^n$$

Input constraints

 $\mathcal{U} \subset \mathbb{R}^n$

Output constraints

 $\mathcal{Y} \subset \mathbb{R}^n$

Time constraints (e.g., delay, discrete-time communication)

Consider the system dynamics

$$\dot{x} = f(x, u)$$
 $x \in \mathcal{X}, u \in \mathcal{U}$
 $y = h(x)$ $y \in \mathcal{Y}$

$$\mathcal{X} \subset \mathbb{R}^n$$

Input constraints

 $\mathcal{U} \subset \mathbb{R}^n$

Output constraints

 $\mathcal{Y} \subset \mathbb{R}^n$

▶ Time constraints (*e.g.*, delay, discrete-time communication)

Consider the system dynamics

$$\dot{x} = f(x, u)$$
 $x \in \mathcal{X}, u \in \mathcal{U}$
 $y = h(x)$ $y \in \mathcal{Y}$

$$\mathcal{X} \subset \mathbb{R}^n$$

Input constraints

$$\mathcal{U} \subset \mathbb{R}^n$$

Output constraints

 $\mathcal{Y} \subset \mathbb{R}^n$

▶ Time constraints (*e.g.*, delay, discrete-time communication)

Consider the system dynamics

$$\dot{x} = f(x, u)$$
 $x \in \mathcal{X}, u \in \mathcal{U}$
 $y = h(x)$ $y \in \mathcal{Y}$

$$\mathcal{X} \subset \mathbb{R}^n$$

$$\mathcal{U} \subset \mathbb{R}^n$$

Output constraints

 $\mathcal{Y} \subset \mathbb{R}^n$

▶ Time constraints (*e.g.*, delay, discrete-time communication)

Consider the system dynamics

$$\dot{x} = f(x, u)$$
 $x \in \mathcal{X}, u \in \mathcal{U}$
 $y = h(x)$ $y \in \mathcal{Y}$

state-space constraints

$$\mathcal{X} \subset \mathbb{R}^n$$

Input constraints

$$\mathcal{U} \subset \mathbb{R}^n$$

Output constraints

$$\mathcal{Y} \subset \mathbb{R}^n$$

Time constraints (e.g., delay, discrete-time communication)

Consider the system dynamics

$$\dot{x} = f(x, u)$$
 $x \in \mathcal{X}, u \in \mathcal{U}$
 $y = h(x)$ $y \in \mathcal{Y}$

state-space constraints

$$\mathcal{X} \subset \mathbb{R}^n$$

Input constraints

$$\mathcal{U} \subset \mathbb{R}^n$$

Output constraints

$$\mathcal{Y} \subset \mathbb{R}^n$$

Time constraints (e.g., delay, discrete-time communication)

Systems with Constraints State-Space Constraints

Example

Real constraint

$$\dot{x} = \pi^{\perp}(x)u$$

s.th. $\pi^{\perp}(x) := I - xx^{\top}$.

Systems with Constraints State-Space Constraints

Example

▶ Real constraint

 x
 x
 = π[⊥](x)u
 s.th. π[⊥](x) := I − xx[⊤].

Design constraint

$$\dot{x} = u$$

 $u = \pi^{\perp}(x)v$

Control of Systems with State-Constraints

Consider the constrained system

$$\dot{x} = f(x, u)$$
 $x \in \mathcal{X}$

Objective (Control)

Design a control law $u(\cdot)$ such that x = 0 is a globally asymptotically (exponentially) stable equilibrium.

Observer Design for Systems with State-Constraints

Consider the dynamical system

$$\dot{x} = f(x, u)$$
 $x \in \mathcal{X}$
 $y = h(x)$

Objective (Estimation)

Design an estimation law for \hat{x} such that $x - \hat{x} = 0$ a globally asymptotically (exponentially) stable equilibrium and

$$\hat{x} \in \hat{\mathcal{X}} \supseteq \mathcal{X}$$
, for all times.

- $\hat{\mathcal{X}} = \mathcal{X}$: strictly constrained estimation
- $\hat{\mathcal{X}} \supset \mathcal{X}$: constrained estimation
- $\hat{\mathcal{X}} = \mathbb{R}^n$: non-constrained estimation

Outline

Systems with Constraints

Topological Incompatibility

Hybrid Systems Framework

Control Examples

Estimation Examples

State-Space vs. Control Objective

Let $f \in \mathcal{C}^1(\mathbb{R}^n)$ and

$$\dot{x} = f(x), \quad x \in \mathcal{X}$$
 (1)

¹F. W. Wilson (1967). The structure of the level surfaces of a Lyapunov function. *Journal of Differential Equations*.

State-Space vs. Control Objective

Let $f \in \mathcal{C}^1(\mathbb{R}^n)$ and

$$\dot{x} = f(x), \quad x \in \mathcal{X}$$
 (1)

Fact (Theorem 2.2 from ¹

The domain of asymptotic stability of any critical point of (1) is diffeomorphic to \mathbb{R}^m for some $m \ge 0$.

¹F. W. Wilson (1967). The structure of the level surfaces of a Lyapunov function. *Journal of Differential Equations*.

State-Space vs. Control Objective

Let $f \in \mathcal{C}^1(\mathbb{R}^n)$ and

$$\dot{x} = f(x), \quad x \in \mathcal{X}$$
 (1)

Fact (Theorem 2.2 from ¹)

The domain of asymptotic stability of any critical point of (1) is diffeomorphic to \mathbb{R}^m for some $m \ge 0$.

Corollary

If \mathcal{X} and \mathbb{R}^m are not topologically equivalent (not the same "shape") then global asymptotic stability is not possible.

¹F. W. Wilson (1967). The structure of the level surfaces of a Lyapunov function. *Journal of Differential Equations*.

Example (Non-simply connected \mathcal{X})

• $\mathcal{X} = \mathbb{R}^n \setminus \mathcal{O}$ is non-simply connected

Example (Non-simply connected \mathcal{X})

- $\mathcal{X} = \mathbb{R}^n \setminus \mathcal{O}$ is non-simply connected
- \mathbb{R}^m is simply connected $\forall m$

Example (Non-simply connected \mathcal{X})

•
$$\mathcal{X} = \mathbb{R}^n \setminus \mathcal{O}$$
 is non-simply connected

• \mathbb{R}^m is simply connected $\forall m$

Corollary

Topological obstruction to GAS on non-simply connected spaces.

Example (Non-contractible \mathcal{X})

Compact manifolds are non-contractible

² \mathcal{M} is contractible if there exists a continuous map $h: \mathcal{M} \times [0,1] \to \mathcal{M}$ and $x_0 \in \mathcal{M}$ such that h(x,0) = x and $h(x,1) = x_0$ for all $x \in \mathcal{M}$.

Example (Non-contractible \mathcal{X})

Compact manifolds are non-contractible

▶ **ℝ**ⁿ is contractible

² \mathcal{M} is contractible if there exists a continuous map $h: \mathcal{M} \times [0,1] \to \mathcal{M}$ and $x_0 \in \mathcal{M}$ such that h(x,0) = x and $h(x,1) = x_0$ for all $x \in \mathcal{M}$.

Example (Non-contractible \mathcal{X})

- Compact manifolds are non-contractible
- \mathbb{R}^n is contractible

Corollary

Topological obstruction to GAS on non-contractible² spaces.

² \mathcal{M} is contractible if there exists a continuous map $h: \mathcal{M} \times [0,1] \to \mathcal{M}$ and $x_0 \in \mathcal{M}$ such that h(x,0) = x and $h(x,1) = x_0$ for all $x \in \mathcal{M}$. Topological Incompatibility State-Space vs. Control Objective Example (Control on S^1)

 \blacktriangleright Kinematics on \mathbb{S}^1

$$\begin{cases} \dot{x}_1 &= -\omega x_2 \\ \dot{x}_2 &= \omega x_1 \end{cases}$$

Topological Incompatibility State-Space vs. Control Objective Example (Control on S^1)

▶ Kinematics on S¹

$$\begin{cases} \dot{x}_1 &= -\omega x_2 \\ \dot{x}_2 &= \omega x_1 \end{cases}$$

Smooth Controller

$$\omega = -kx_2, \quad k > 0.$$

Example (Control on \mathbb{S}^1)

• Kinematics on \mathbb{S}^1

$$\begin{cases} \dot{x}_1 &= -\omega x_2 \\ \dot{x}_2 &= \omega x_1 \end{cases}$$

Discontinuous Controller

 $\omega = -\text{sign}(x_2) \arccos(x_1)$

with

$$sign(x_2) := \begin{cases} 1 & x_2 \ge 0 \\ -1 & x_2 < 0 \end{cases}$$

14/51

State-Space vs. Control Objective

Fact (C. Mayhew et al. 2011^3)

If a compact set can not be globally asymptotically stabilized by continuous feedback then it can not be **robustly asymptotically globally stabilized** by discontinuous feedback either.

 $^{^{3}}$ Mayhew, C. G., and Teel, A. R. (2011). On the topological structure of attraction basins for differential inclusions. Systems & Control Letters, 60(12), 1045-1050.

State-Space vs. Control Objective

Fact (C. Mayhew et al. 2011^3)

If a compact set can not be globally asymptotically stabilized by continuous feedback then it can not be **robustly asymptotically globally stabilized** by discontinuous feedback either.

 \Rightarrow We need either:

- Hybrid Feedback
- Time-Varying Feedback

 $^{^{3}}$ Mayhew, C. G., and Teel, A. R. (2011). On the topological structure of attraction basins for differential inclusions. Systems & Control Letters, 60(12), 1045-1050.

State-Space vs. Control Objective

Fact (C. Mayhew et al. 2011^3)

If a compact set can not be globally asymptotically stabilized by continuous feedback then it can not be **robustly asymptotically globally stabilized** by discontinuous feedback either.

 \Rightarrow We need either:

- Hybrid Feedback
- Time-Varying Feedback (open problem)

 $^{^3}$ Mayhew, C. G., and Teel, A. R. (2011). On the topological structure of attraction basins for differential inclusions. Systems & Control Letters, 60(12), 1045-1050.

Outline

Systems with Constraints

Topological Incompatibility

Hybrid Systems Framework

Control Examples

Estimation Examples

$$\begin{cases} \dot{x} \in \mathbf{F}(x) & x \in \mathcal{F} \\ x^+ \in \mathbf{J}(x) & x \in \mathcal{J} \end{cases}$$

• state: $x \in \mathbb{R}^n$

- flow map: $\mathbf{F} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- flow set: $\mathcal{F} \subseteq \mathbb{R}^n$
- **b** jump map: $\mathbf{J} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- ▶ jump set: $\mathcal{J} \subseteq \mathbb{R}^n$

$$\begin{cases} \dot{x} \in \mathbf{F}(x) & x \in \mathcal{F} \\ x^+ \in \mathbf{J}(x) & x \in \mathcal{J} \end{cases}$$

- state: $x \in \mathbb{R}^n$
- flow map: $\mathbf{F} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- flow set: $\mathcal{F} \subseteq \mathbb{R}^n$
- **b** jump map: $\mathbf{J} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- ▶ jump set: $\mathcal{J} \subseteq \mathbb{R}^n$

$$\begin{cases} \dot{x} \in \mathbf{F}(x) & x \in \mathcal{F} \\ x^+ \in \mathbf{J}(x) & x \in \mathcal{J} \end{cases}$$

- state: $x \in \mathbb{R}^n$
- flow map: $\mathbf{F} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- flow set: $\mathcal{F} \subseteq \mathbb{R}^n$
- **b** jump map: $\mathbf{J} : \mathbb{R}^n \Rightarrow \mathbb{R}^n$
- ▶ jump set: $\mathcal{J} \subseteq \mathbb{R}^n$

17/51

$$\begin{cases} \dot{x} \in \mathbf{F}(x) & x \in \mathcal{F} \\ x^+ \in \mathbf{J}(x) & x \in \mathcal{J} \end{cases}$$

J

- state: $x \in \mathbb{R}^n$
- flow map: $\mathbf{F} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- flow set: $\mathcal{F} \subseteq \mathbb{R}^n$
- jump map: J : ℝⁿ ⇒ ℝⁿ
 jump set: J ⊆ ℝⁿ

$$\begin{cases} \dot{x} \in \mathbf{F}(x) & x \in \mathcal{F} \\ x^+ \in \mathbf{J}(x) & x \in \mathcal{J} \end{cases}$$

J

- state: $x \in \mathbb{R}^n$
- flow map: $\mathbf{F} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- flow set: $\mathcal{F} \subseteq \mathbb{R}^n$
- **J** jump map: $\mathbf{J} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- jump set: $\mathcal{J} \subseteq \mathbb{R}^n$

Hybrid Systems Framework Hybrid Time Domains

$$\begin{cases} \dot{x} \in \mathbf{F}(x) & x \in \mathcal{F} \\ x^+ \in \mathbf{J}(x) & x \in \mathcal{J} \end{cases}$$

Hybrid Systems Framework Hybrid Time Domains

$$\begin{cases} \dot{x} \in \mathbf{F}(x) & x \in \mathcal{F} \\ x^+ \in \mathbf{J}(x) & x \in \mathcal{J} \end{cases}$$

Hybrid time domain

 $(t,j) \in \mathbb{H} \subseteq \mathbb{R}_{\geq 0} \times \mathbb{N}$

- *t*: amount of **time** passed
- j: number of jumps occurred

Hybrid Systems Framework Hybrid Time Domains

$$\begin{cases} \dot{x} \in \mathbf{F}(x) & x \in \mathcal{F} \\ x^+ \in \mathbf{J}(x) & x \in \mathcal{J} \end{cases}$$

Hybrid time domain

$$(t,j) \in \mathbb{H} \subseteq \mathbb{R}_{\geq 0} \times \mathbb{N}$$

t: amount of time passed *j*: number of jumps occurred

Motivation Example on \mathbb{S}^1

 \blacktriangleright Kinematics on \mathbb{S}^1

$$\dot{x} = S(\omega)x$$

Motivation Example on \mathbb{S}^1

Kinematics on S¹

 $\dot{x} = S(\omega)x$

Let $q \in \{1,2\}$ and $c_q \in \mathcal{C}_q \subset \mathbb{S}^1$.

Motivation Example on \mathbb{S}^1

Kinematics on S¹

 $\dot{x} = S(\omega)x$

Outline

Systems with Constraints

Topological Incompatibility

Hybrid Systems Framework

Control Examples

Estimation Examples

Hybrid Attitude Stabilization on SO(3)

Problem Formulation

Consider the attitude kinematics

$$\dot{R}=R[\omega]_{ imes},\quad R(0)\in\mathbb{SO}(3)$$

where R is the attitude and $\omega \in \mathbb{R}^3$ is the angular velocity.

Hybrid Attitude Stabilization on SO(3)

Problem Formulation

Consider the attitude kinematics

$$\dot{R}=R[\omega]_{ imes},\quad R(0)\in\mathbb{SO}(3)$$

where *R* is the attitude and $\omega \in \mathbb{R}^3$ is the angular velocity.

Objective

Design ω such that $R = I_3$ is globally exponentially stable.

Hybrid Attitude Stabilization on SO(3)

Potential Functions

• $q \in Q$ is a discrete variable (controller mode)

Definition

- $\Phi(R,q)$ is a **potential function** if
 - Continuous
 - Continuously differentiable on $\mathcal{D}\subseteq \mathbb{SO}(3)\times \mathcal{Q}$
 - Positive definite w.r.t $\{I\} imes \mathcal{Q}$

Exp-synergistic Potential Functions

$$\blacktriangleright \mathcal{F} := \{ (R,q) : \Phi(R,q) - \min_{m \in \mathcal{Q}} \Phi(R,m) \le \delta \}$$

Exp-synergistic Potential Functions

$$\blacktriangleright \mathcal{F} := \{ (R,q) : \Phi(R,q) - \min_{m \in \mathcal{Q}} \Phi(R,m) \le \delta \}$$

Definition

 Φ is **exp-synergistic** with gap exceeding $\delta > 0$ iff:

$$egin{aligned} &lpha_1|R|_I^2 \leq \Phi(R,q) \leq lpha_2|R|_I^2 & orall (R,q) \in \mathbb{SO}(3) imes \mathcal{Q} \ &lpha_3|R|_I^2 \leq \|
abla \Phi(R,q)\|_F^2 \leq lpha_4|R|_I^2 & orall (R,q) \in \mathcal{F} \ &\mathcal{F} \subseteq \mathcal{D} \end{aligned}$$

• Both Φ and $\nabla \Phi$ are quadratic in $|R|_I := ||I - R||_F / \sqrt{8}$

▶ Possible singular/critical points are outside the flow set *F*

Synergistic Hybrid Feedback

Synergistic Hybrid Feedback

Hybrid controller

$$egin{aligned} & \omega = -(R^{ op}
abla \Phi(R,q))^{ee} \ & \dot{q} = 0 & (R,q) \in \mathcal{F} \ & q^+ \in rg\min_{m \in \mathcal{Q}} \Phi(R,m) & (R,q) \in \mathcal{J} \end{aligned}$$

Synergistic Hybrid Feedback

Hybrid controller

$$egin{aligned} & \omega = -(R^{ op}
abla \Phi(R,q))^{ee} \ & \dot{q} = 0 & (R,q) \in \mathcal{F} \ & q^+ \in rg\min_{m \in \mathcal{Q}} \Phi(R,m) & (R,q) \in \mathcal{J} \end{aligned}$$

Theorem

If Φ is **exp-synergistic** with gap exceeding δ then the set $\{I\} \times Q$ is globally exponentially stable.

 $\begin{array}{l} \mbox{Construction of exp-synergistic potential functions} \\ \mbox{For example}^{45}, \mbox{ consider} \end{array}$

$$\Psi(R) := \operatorname{tr}(A(I-R)), \quad A = A^{\top} > 0.$$

Consider the map (angular warping2)

$$\Gamma(R,q) := R \exp(\theta(R,q)[u(q)]_{ imes})$$

⁴Berkane, S., Abdessameud, A., and Tayebi, A. (2017). Hybrid global exponential stabilization on *SO*(3). Automatica, 81, 279-285.

⁵Berkane, S., Abdessameud, A., and Tayebi, A. (2018). Hybrid Output Feedback For Attitude Tracking on SO(3). IEEE Transactions on Automatic Control.

 $\begin{array}{l} \mbox{Construction of exp-synergistic potential functions} \\ \mbox{For example}^{45}, \mbox{ consider} \end{array}$

$$\Psi(R) := \operatorname{tr}(A(I-R)), \quad A = A^{\top} > 0.$$

Consider the map (angular warping2)

$$\Gamma(R,q) := R \exp(\theta(R,q)[u(q)]_{ imes})$$

Theorem

Under some suitable $\theta(R, q)$ and u(q), the potential function $\Psi \circ \Gamma$ is exp-synergistic with a given gap δ .

⁴Berkane, S., Abdessameud, A., and Tayebi, A. (2017). Hybrid global exponential stabilization on *SO*(3). Automatica, 81, 279-285.

⁵Berkane, S., Abdessameud, A., and Tayebi, A. (2018). Hybrid Output Feedback For Attitude Tracking on SO(3). IEEE Transactions on Automatic Control.

- Artificial potential fields suffer from local minima
- Navigation functions are not correct-by-construction (require tuning)
- Resulting feedback is strongly invasive

- Artificial potential fields suffer from local minima
- Navigation functions are not correct-by-construction (require tuning)
- Resulting feedback is strongly invasive

- Artificial potential fields suffer from local minima
- Navigation functions are not correct-by-construction (require tuning)
- Resulting feedback is strongly invasive

- Artificial potential fields suffer from local minima
- Navigation functions are not correct-by-construction (require tuning)
- Resulting feedback is strongly invasive

Obstacle Avoidance via Hybrid Feedback Problem Formulation

Consider the dynamics

$$\dot{x} = u, \quad x(0) \in \mathbb{R}^n \setminus \mathcal{O}$$

with the objective to globally asymptotically stabilize x = 0 while avoiding the obstacle

$$\mathcal{O} := \{ x \in \mathbb{R}^n : \|x - c\| \le \epsilon \}.$$

Obstacle Avoidance via Hybrid Feedback Control Input

The control law has three modes

$$u = \kappa(x, m) := \begin{cases} -k_0 x, & m = 0 \\ -k_m \pi^{\perp}(x - c)(x - p_m), & m \in \{-1, 1\} \end{cases}$$

Stabilization mode (m = 0)

• Avoidance modes (m = -1, 1) guarantee that

$$\frac{d\|x-c\|^2}{dt} = -k_m(x-c)^{\top}\pi^{\perp}(x-c)(x-p_m) = 0$$

 \Rightarrow safe avoidance

Obstacle Avoidance via Hybrid Feedback Control Input

The control law has three modes

$$u = \kappa(x, m) := \begin{cases} -k_0 x, & m = 0 \\ -k_m \pi^{\perp}(x - c)(x - p_m), & m \in \{-1, 1\} \end{cases}$$

Stabilization mode (m = 0)

• Avoidance modes (m = -1, 1) guarantee that

$$\frac{d\|x-c\|^2}{dt} = -k_m(x-c)^{\top}\pi^{\perp}(x-c)(x-p_m) = 0$$

 \Rightarrow safe avoidance

Obstacle Avoidance via Hybrid Feedback Control Input

The control law has three modes

$$u = \kappa(x, m) := egin{cases} -k_0 x, & m = 0 \ -k_m \pi^{\perp}(x-c)(x-p_m), & m \in \{-1, 1\} \end{cases}$$

- Stabilization mode (m = 0)
- ► Avoidance modes (m = −1, 1) guarantee that

$$\frac{d\|x-c\|^2}{dt} = -k_m(x-c)^{\top}\pi^{\perp}(x-c)(x-p_m) = 0$$

 \Rightarrow safe avoidance

Construction of the Stabilization Flow and Jump Sets

Under the feedback $-k_0x$, what is the *unsafe* region?

Obstacle Avoidance via Hybrid Feedback Construction of the Stabilization Flow and Jump Sets

Under the feedback $-k_0x$, what is the *unsafe* region?

$$rac{d\|x-c\|^2}{dt} = -2k_0x^ op(x-c) \leq 0 \Longleftrightarrow \|x-c/2\|^2 \geq \|c/2\|^2\,.$$

Obstacle Avoidance via Hybrid Feedback Construction of the Stabilization Flow and Jump Sets

Under the feedback $-k_0x$, what is the *unsafe* region?

$$rac{d\|x-c\|^2}{dt} = -2k_0x^ op(x-c) \leq 0 \Longleftrightarrow \|x-c/2\|^2 \geq \|c/2\|^2$$
 .

 \mathcal{J}_0 : safety helmet

We need to jump to the avoidance mode when $x \in \mathcal{J}_0$

Obstacle Avoidance via Hybrid Feedback Construction of the Stabilization Flow and Jump Sets

Stabilization flow set \mathcal{F}_0 and jump set \mathcal{J}_0

Construction of the Avoidance Flow and Jump Sets

Closed-Loop Hybrid Dynamical System

$$\begin{cases} \dot{x} = \kappa(x, m) \\ \dot{m} = 0 \end{cases} \qquad (x, m) \in \bigcup_{m \in \{-1, 0, 1\}} \mathcal{F}_m \times \{m\} \qquad (2) \\ \begin{cases} x^+ = x \\ m^+ \in \mathbf{M}(x, m) \end{cases} \qquad (x, m) \in \bigcup_{m \in \{-1, 0, 1\}} \mathcal{J}_m \times \{m\}. \qquad (3) \end{cases}$$

Closed-Loop Hybrid Dynamical System

$$\begin{cases} \dot{x} = \kappa(x, m) \\ \dot{m} = 0 \end{cases} \quad (x, m) \in \bigcup_{m \in \{-1, 0, 1\}} \mathcal{F}_m \times \{m\} \quad (2) \\ \begin{cases} x^+ = x \\ m^+ \in \mathbf{M}(x, m) \end{cases} \quad (x, m) \in \bigcup_{m \in \{-1, 0, 1\}} \mathcal{J}_m \times \{m\}. \quad (3) \end{cases}$$

Theorem

- (Safety) $(\mathbb{R}^n \setminus \mathcal{O}) \times \{-1, 0, 1\}$ is forward invariant
- ► (Convergence) {0} × {0} is globally asymptotically stable
- (Preservation) there exist controller parameters such that u matches -k₀x almost everywhere

Simulation (3D scenario)

Figure 1: \mathcal{F}_1 (blue), \mathcal{J}_0 (red) and obstacle (gray)

Simulation (3D scenario)

Figure 1: \mathcal{F}_{-1} (green), \mathcal{J}_0 (red) and obstacle (gray)

Simulation (3D scenario)

Figure 1: Different trajectories
Obstacle Avoidance via Hybrid Feedback

- Preliminary work for single spherical obstacle ⁶
- We have extensions to multiple ellipsoid-shaped obstacles⁷

⁶S. Berkane, A. Bisoffi and D. V. Dimarogonas, "A Hybrid Controller for Obstacle Avoidance in the *n*-Dimensional Euclidean Space", submitted to *European Control Conference*, 2019.

⁷Journal extension in preparation.

Outline

Systems with Constraints

Topological Incompatibility

Hybrid Systems Framework

Control Examples

Estimation Examples

Observer Design for Systems with State-Constraints

Objective (Estimation)

Design an estimation law for \hat{x} such that $x - \hat{x} = 0$ is globally asymptotically stable and

 $\hat{x} \in \hat{\mathcal{X}} \supseteq \mathcal{X}$ for all times.

- $\hat{\mathcal{X}} = \mathcal{X}$: strictly constrained estimation
- $\hat{\mathcal{X}} \supset \mathcal{X}$: constrained estimation
- $\hat{\mathcal{X}} = \mathbb{R}^n$: non-constrained estimation

Observer Design for Systems with State-Constraints

Objective (Estimation)

Design an estimation law for \hat{x} such that $x - \hat{x} = 0$ is globally asymptotically stable and

 $\hat{x} \in \hat{\mathcal{X}} \supseteq \mathcal{X}$ for all times.

- $\hat{\mathcal{X}} = \mathcal{X}$: strictly constrained estimation
- $\hat{\mathcal{X}} \supset \mathcal{X}$: constrained estimation
- $\hat{\mathcal{X}} = \mathbb{R}^n$: non-constrained estimation

Problem Formulation

Consider the attitude kinematics:

 $\dot{R} = R[\omega]_{\times}$

with vector measurements on \mathbb{S}^2 :

Problem Formulation

Consider the attitude kinematics:

$$\dot{R} = R[\omega]_{ imes}$$

with vector measurements on \mathbb{S}^2 :

Objective

Estimate the rotation matrix R using gyro readings of ω and vector measurements b_1, \dots, b_n with global exponential stability of the estimation error.

Attitude estimation

$$\dot{\hat{R}} = \hat{R}[\omega + \sigma]_{ imes}, \quad \hat{R}(0) \in \mathbb{SO}(3)$$

- Strictly constrained since $\hat{R}(t) \in SO(3)$ for all times.
- Cost function

$$\frac{1}{2}\sum_{i=1}^{n} \|b_{i} - \hat{R}^{\mathsf{T}} a_{i}\|^{2} \rightsquigarrow^{\text{gradient}} \sigma = \sum_{i=1}^{n} \rho_{i} (b_{i} \times \hat{R}^{\mathsf{T}} a_{i})$$

Theorem (R. Mahony & T. Hamel)

Attitude estimation

$$\dot{\hat{R}} = \hat{R}[\omega + \sigma]_{ imes}, \quad \hat{R}(0) \in \mathbb{SO}(3)$$

Strictly constrained since R̂(t) ∈ SO(3) for all times.
Cost function

$$\frac{1}{2}\sum_{i=1}^{n} \|b_{i} - \hat{R}^{\mathsf{T}}a_{i}\|^{2} \rightsquigarrow^{\mathsf{gradient}} \sigma = \sum_{i=1}^{n} \rho_{i}(b_{i} \times \hat{R}^{\mathsf{T}}a_{i})$$

Theorem (R. Mahony & T. Hamel)

Attitude estimation

$$\dot{\hat{R}} = \hat{R}[\omega + \sigma]_{ imes}, \quad \hat{R}(0) \in \mathbb{SO}(3)$$

- Strictly constrained since $\hat{R}(t) \in SO(3)$ for all times.
- Cost function

$$\frac{1}{2}\sum_{i=1}^{n} \|b_{i} - \hat{R}^{\top}a_{i}\|^{2} \rightsquigarrow^{\text{gradient}} \sigma = \sum_{i=1}^{n} \rho_{i}(b_{i} \times \hat{R}^{\top}a_{i})$$

Theorem (R. Mahony & T. Hamel)

Attitude estimation

$$\dot{\hat{R}} = \hat{R}[\omega + \sigma]_{ imes}, \quad \hat{R}(0) \in \mathbb{SO}(3)$$

- Strictly constrained since $\hat{R}(t) \in SO(3)$ for all times.
- Cost function

$$\frac{1}{2}\sum_{i=1}^{n} \|b_{i} - \hat{R}^{\top}a_{i}\|^{2} \rightsquigarrow^{\text{gradient}} \sigma = \sum_{i=1}^{n} \rho_{i}(b_{i} \times \hat{R}^{\top}a_{i})$$

Theorem (R. Mahony & T. Hamel)

Attitude estimation

$$\dot{\hat{R}} = \hat{R}[\omega + \sigma]_{ imes}, \quad \hat{R}(0) \in \mathbb{SO}(3)$$

- Strictly constrained since $\hat{R}(t) \in SO(3)$ for all times.
- Cost function

$$\frac{1}{2}\sum_{i=1}^{n} \|b_{i} - \hat{R}^{\top}a_{i}\|^{2} \rightsquigarrow^{\text{gradient}} \sigma = \sum_{i=1}^{n} \rho_{i}(b_{i} \times \hat{R}^{\top}a_{i})$$

Theorem (R. Mahony & T. Hamel)

Hybrid Attitude Estimation on SO(3)Motivation on S^1

39/51

Hybrid Attitude Estimation on SO(3)Motivation on S^1

• State **reset**:
$$\hat{x}^+ = \mathbf{R}(\theta)\hat{x}$$

Causes estimation error to decrease

Hybrid Attitude Estimation on SO(3)Motivation on S^1

Reset-based approach

Attitude estimation

$$\begin{split} \dot{\hat{R}} &= \hat{R}[\omega + \sigma]_{\times} \qquad ((b_i)_{1\cdots n}, \hat{R}) \in \hat{\mathcal{F}} \\ \hat{R}^+ &= \mathbf{R}(\theta u_q) \hat{R} \qquad ((b_i)_{1\cdots n}, \hat{R}) \in \hat{\mathcal{J}} \end{split}$$

Innovation

(**Cost function**) $\hat{\Phi}((b_i)_{1\cdots n}, \hat{R}) \rightsquigarrow^{gradient} \sigma = \hat{w}((b_i)_{1\cdots n}, \hat{R})$

Flow and jump sets

$$\hat{\mathcal{F}} = \{ \hat{\Phi}(\cdot, \hat{R}) - \min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_{q})\hat{R}) \le \delta \}$$
$$\hat{\mathcal{J}} = \{ \hat{\Phi}(\cdot, \hat{R}) - \min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_{q})\hat{R}) \ge \delta \}$$

 $\bullet \ \theta \in \mathbb{R} \text{ and } q = \arg\min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_q) \hat{R}).$

Reset-based approach

Attitude estimation

$$\begin{split} \dot{\hat{R}} &= \hat{R}[\omega + \sigma]_{\times} \qquad ((b_i)_{1\cdots n}, \hat{R}) \in \hat{\mathcal{F}} \\ \hat{R}^+ &= \mathbf{R}(\theta u_q) \hat{R} \qquad ((b_i)_{1\cdots n}, \hat{R}) \in \hat{\mathcal{J}} \end{split}$$

Innovation

(Cost function) $\hat{\Phi}((b_i)_{1\cdots n}, \hat{R}) \rightsquigarrow^{gradient} \sigma = \hat{w}((b_i)_{1\cdots n}, \hat{R})$

Flow and jump sets

$$\hat{\mathcal{F}} = \{ \hat{\Phi}(\cdot, \hat{R}) - \min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_{q})\hat{R}) \le \delta \}$$
$$\hat{\mathcal{J}} = \{ \hat{\Phi}(\cdot, \hat{R}) - \min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_{q})\hat{R}) \ge \delta \}$$

▶ $\theta \in \mathbb{R}$ and $q = \arg\min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_q)\hat{R}).$

Reset-based approach

Attitude estimation

$$\begin{split} \dot{\hat{R}} &= \hat{R}[\omega + \sigma]_{\times} \qquad ((b_i)_{1\cdots n}, \hat{R}) \in \hat{\mathcal{F}} \\ \hat{R}^+ &= \mathbf{R}(\theta u_q) \hat{R} \qquad ((b_i)_{1\cdots n}, \hat{R}) \in \hat{\mathcal{J}} \end{split}$$

Innovation

(Cost function) $\hat{\Phi}((b_i)_{1\cdots n}, \hat{R}) \rightsquigarrow^{gradient} \sigma = \hat{w}((b_i)_{1\cdots n}, \hat{R})$

Flow and jump sets

$$\hat{\mathcal{F}} = \{ \hat{\Phi}(\cdot, \hat{R}) - \min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_{q})\hat{R}) \le \delta \}$$
$$\hat{\mathcal{J}} = \{ \hat{\Phi}(\cdot, \hat{R}) - \min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_{q})\hat{R}) \ge \delta \}$$

▶ $\theta \in \mathbb{R}$ and $q = \arg\min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_q)\hat{R}).$

40 / 51

Reset-based approach

Attitude estimation

$$\begin{split} \dot{\hat{R}} &= \hat{R}[\omega + \sigma]_{\times} \qquad ((b_i)_{1\cdots n}, \hat{R}) \in \hat{\mathcal{F}} \\ \hat{R}^+ &= \mathbf{R}(\theta u_q) \hat{R} \qquad ((b_i)_{1\cdots n}, \hat{R}) \in \hat{\mathcal{J}} \end{split}$$

Innovation

(Cost function) $\hat{\Phi}((b_i)_{1\cdots n}, \hat{R}) \rightsquigarrow^{gradient} \sigma = \hat{w}((b_i)_{1\cdots n}, \hat{R})$

Flow and jump sets

$$\hat{\mathcal{F}} = \{ \hat{\Phi}(\cdot, \hat{R}) - \min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_{q})\hat{R}) \le \delta \}$$
$$\hat{\mathcal{J}} = \{ \hat{\Phi}(\cdot, \hat{R}) - \min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_{q})\hat{R}) \ge \delta \}$$

 $\blacktriangleright \ \theta \in \mathbb{R} \text{ and } q = \arg \min_{m} \hat{\Phi}(\cdot, \mathbf{R}(\theta u_q) \hat{R}).$

40 / 51

Reset-based approach

Theorem (S. Berkane, PhD thesis 2017)

If we have

- 1. $\hat{\Phi}$ is quadratic
- 2. $\|\nabla \hat{\Phi}\|_{F}^{2}$ is quadratic on the flow set $\hat{\mathcal{F}}$
- 3. singular points of $\hat{\Phi}$ lie in the jump set $\hat{\mathcal{J}}$

then the zero estimation error is globally exponentially stable.

Reset-based approach

Theorem (S. Berkane, PhD thesis 2017)

If we have

- 1. $\hat{\Phi}$ is quadratic
- 2. $\|\nabla \hat{\Phi}\|_{F}^{2}$ is quadratic on the flow set $\hat{\mathcal{F}}$
- 3. singular points of $\hat{\Phi}$ lie in the jump set $\hat{\mathcal{J}}$

then the zero estimation error is globally exponentially stable.

Example

- Take $\Phi = \sum_{i=1}^{n} \rho_i \| b_i \hat{R}^\top a_i \|^2$
- Pick $\theta = \pi$ and $0 < \delta < \lambda_1^A + \lambda_2^A$ with $A = \sum_{i=1}^n \rho_i a_i a_i^\top$
- Pick $\{u_1, u_2, u_3\}$ be an orthonormal set of eigenvectors of A

- Attitude + gyro bias⁸: synergistic-based approach
- ► **GPS-aided**⁹: reset-based approach
- Full state¹⁰: attitude and angular velocity estimation, synergistic-based approach
- Intermittent measurements¹¹: sensors with different sampling

 $^{^{8}}$ Berkane, S., Abdessameud, A., & Tayebi, A. (2017). Hybrid Attitude and Gyro-Bias Observer Design on SO(3). IEEE TAC.

⁹Berkane, S. and Tayebi, A. (2017). Attitude and gyro bias estimation using GPS and IMU measurements. IEEE CDC.

¹⁰Berkane, S., Abdessameud, A., & Tayebi, A. (2018). Hybrid Output Feedback For Attitude Tracking on SO (3). IEEE TAC.

¹¹Berkane, S. and Tayebi, A. (2018). Attitude Estimation with Intermittent Measurements. Automatica.

Observer Design for Systems with State-Constraints

Objective (Estimation)

Design an estimation law for \hat{x} such that $x - \hat{x} = 0$ is globally asymptotically stable and

 $\hat{x} \in \hat{\mathcal{X}} \supseteq \mathcal{X}$ for all times.

- $\hat{\mathcal{X}} = \mathcal{X}$: strictly constrained estimation
- $\hat{\mathcal{X}} \supset \mathcal{X}$: constrained estimation
- $\hat{\mathcal{X}} = \mathbb{R}^n$: non-constrained estimation

Observer Design for Systems with State-Constraints

Objective (Estimation)

Design an estimation law for \hat{x} such that $x - \hat{x} = 0$ is globally asymptotically stable and

 $\hat{x} \in \hat{\mathcal{X}} \supseteq \mathcal{X}$ for all times.

- $\hat{\mathcal{X}} = \mathcal{X}$: strictly constrained estimation
- $\hat{\mathcal{X}} \supset \mathcal{X}$: constrained estimation
- $\hat{\mathcal{X}} = \mathbb{R}^n$: non-constrained estimation

Hybrid Constrained Estimation For LTV Systems System Model

Consider the LTV system

$$\dot{x} = A(t)x + B(t)u(t)$$

 $y = C(t)x$

Hybrid Constrained Estimation For LTV Systems System Model

Consider the LTV system

$$\dot{x} = A(t)x + B(t)u(t)$$
$$y = C(t)x$$

x is constrained to evolve on the set

$$\mathcal{D}(t,y) := \{x \in \mathbb{R}^n : D(t,y)x = d(t,y)\}$$

Hybrid Constrained Estimation For LTV Systems Estimation Objective

Objective

Design an estimator for \hat{x} s.th. $\hat{x} \in \hat{\Omega}(t, y) \supset \mathcal{D}(t, y)$ for all times.

Hybrid Constrained Estimation For LTV Systems Estimation Objective

Objective

Design an estimator for \hat{x} s.th. $\hat{x} \in \hat{\Omega}(t, y) \supset \mathcal{D}(t, y)$ for all times.

► (Part of) the output equation C(t)x = y can be used as a constraint in D(t, y)x = d(t, y).

Hybrid Constrained Estimation For LTV Systems Proposed Hybrid Observer

We propose the following hybrid observer:

$$\dot{\hat{x}} = A(t)\hat{x} + B(t)u(t) + \mathcal{K}(t)(y - \mathcal{C}(t)\hat{x}), \quad \hat{x} \in \hat{\mathcal{F}}(t, y)$$

 $\hat{x}^+ = \mathbf{P}_{\mathcal{D}(t,y)}(\hat{x}), \quad \hat{x} \in \hat{\mathcal{J}}(t, y)$

• K(t): from a Riccati equation.

▶ $\mathbf{P}_{\mathcal{D}}(\hat{x})$: projection operator on $D\hat{x} = d$ given by

$$\mathbf{P}_{\mathcal{D}}(\hat{x}) := \hat{x} - PD^{\top}(DPD^{\top})^{-1}(D\hat{x} - d)$$

for some positive definite matrix P.

Hybrid Constrained Estimation For LTV Systems Proposed Hybrid Observer

We propose the following hybrid observer:

$$\dot{\hat{x}} = A(t)\hat{x} + B(t)u(t) + \mathcal{K}(t)(y - \mathcal{C}(t)\hat{x}), \quad \hat{x} \in \hat{\mathcal{F}}(t, y)$$

 $\hat{x}^+ = \mathbf{P}_{\mathcal{D}(t,y)}(\hat{x}), \quad \hat{x} \in \hat{\mathcal{J}}(t, y)$

- K(t): from a Riccati equation.
- ▶ $\mathbf{P}_{\mathcal{D}}(\hat{x})$: projection operator on $D\hat{x} = d$ given by

$$\mathbf{P}_{\mathcal{D}}(\hat{x}) := \hat{x} - PD^{\top}(DPD^{\top})^{-1}(D\hat{x} - d)$$

for some positive definite matrix P.

Hybrid Constrained Estimation For LTV Systems Proposed Hybrid Observer

We propose the following hybrid observer:

$$\dot{\hat{x}} = A(t)\hat{x} + B(t)u(t) + \mathcal{K}(t)(y - \mathcal{C}(t)\hat{x}), \quad \hat{x} \in \hat{\mathcal{F}}(t, y)$$

 $\hat{x}^+ = \mathbf{P}_{\mathcal{D}(t,y)}(\hat{x}), \quad \hat{x} \in \hat{\mathcal{J}}(t, y)$

- K(t): from a Riccati equation.
- $\mathbf{P}_{\mathcal{D}}(\hat{x})$: projection operator on $D\hat{x} = d$ given by

$$\mathbf{P}_{\mathcal{D}}(\hat{x}) := \hat{x} - PD^{\top}(DPD^{\top})^{-1}(D\hat{x} - d)$$

for some positive definite matrix P.

(Objective): *F̂*(t, y) ⊂ Ω̂(t, y)
(Complete): dist(*Ĵ*(t, y), *D̂*(t, y)) > 0
(Global): *F̂*(t, y) ∪ *Ĵ*(t, y) = ℝⁿ

• (**Objective**): $\hat{\mathcal{F}}(t, y) \subset \hat{\Omega}(t, y)$

(Complete): dist(Ĵ(t, y), D̂(t, y)) > 0
(Global): Ê(t, y) ∪ Ĵ(t, y) = ℝⁿ

- (**Objective**): $\hat{\mathcal{F}}(t, y) \subset \hat{\Omega}(t, y)$
- (Complete): $\operatorname{dist}(\hat{\mathcal{J}}(t, y), \hat{\mathcal{D}}(t, y)) > 0$
- (Global): $\hat{\mathcal{F}}(t, y) \cup \hat{\mathcal{J}}(t, y) = \mathbb{R}^n$

- (**Objective**): $\hat{\mathcal{F}}(t, y) \subset \hat{\Omega}(t, y)$
- (Complete): dist $(\hat{\mathcal{J}}(t, y), \hat{\mathcal{D}}(t, y)) > 0$
- (Global): $\hat{\mathcal{F}}(t, y) \cup \hat{\mathcal{J}}(t, y) = \mathbb{R}^n$

Hybrid Constrained Estimation For LTV Systems

Design of the Flow and Jump Sets

- (**Objective**): $\hat{\mathcal{F}}(t, y) \subset \hat{\Omega}(t, y)$
- (Complete): dist $(\hat{\mathcal{J}}(t, y), \hat{\mathcal{D}}(t, y)) > 0$
- (Global): $\hat{\mathcal{F}}(t,y) \cup \hat{\mathcal{J}}(t,y) = \mathbb{R}^n$

Example

- (**Objective**): $\hat{\mathcal{F}}(t, y) \subset \hat{\Omega}(t, y)$
- (Complete): dist $(\hat{\mathcal{J}}(t, y), \hat{\mathcal{D}}(t, y)) > 0$

• (Global):
$$\hat{\mathcal{F}}(t,y) \cup \hat{\mathcal{J}}(t,y) = \mathbb{R}^n$$

Theorem

Global exponential stability of the zero estimation error.
Hybrid Constrained Estimation For LTV Systems

Simulation Scenario

Simulation (A vehicle moving on a road with angle θ)

Let

$$\dot{x} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ I \end{bmatrix} u(t)$$
$$y = \begin{bmatrix} I & 0 \end{bmatrix} x$$

with

$$u(t) = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} v(t)$$

which leads to the constraint

$$\begin{bmatrix} \sin(\theta) & -\cos(\theta) & 0 & 0 \end{bmatrix}^{\top} x(t) = 0.$$

48 / 51

Hybrid Constrained Estimation For LTV Systems Simulation Scenario

Simulation (A vehicle moving on a road with angle θ)

Objective set

$$\hat{\Omega} = \{\hat{x} \in \mathbb{R}^4 : |\sin(\theta)\hat{x}_1 - \cos(\theta)\hat{x}_2| \le \mu\}.$$

Flow set

$$\hat{\mathcal{F}} = \{\hat{x} \in \mathbb{R}^4 : |\sin(\theta)\hat{x}_1 - \cos(\theta)\hat{x}_2| \le \epsilon\}.$$

Jump set

$$\hat{\mathcal{J}} = \{ \hat{x} \in \mathbb{R}^4 : |\sin(heta) \hat{x}_1 - \cos(heta) \hat{x}_2 | \geq \epsilon \}.$$

with $0 < \epsilon < \mu$.

Hybrid Constrained Estimation For LTV Systems Simulation Scenario

49/51

Systems with constraints present topological difficulties

Hybrid systems tools are promising for the control & estimation of systems with constraints

Systems with constraints present topological difficulties

 Hybrid systems tools are promising for the control & estimation of systems with constraints

Systems with constraints present topological difficulties

 Hybrid systems tools are promising for the control & estimation of systems with constraints

Systems with constraints present topological difficulties

 Hybrid systems tools are promising for the control & estimation of systems with constraints

Acknowledgement

- Abdelhamid Tayebi (Lakehead)
- Andrew R. Teel (UC Santa Barbara)
- Dimos Dimarogonas (KTH)
- Abdelkader Abdessameud (Penn State)
- Andrea Bisoffi (KTH)