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Introduction
Research Interests (Applications)

I Navigation and Control of Unmanned Vehicles

I Cooperative Localization for Autonomous Vehicles

I Multi-Robot Systems Coordination & Task Planning
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Systems with Constraints

Consider the system dynamics

ẋ = f (x , u) x ∈ X , u ∈ U
y = h(x) y ∈ Y

I state-space constraints

X ⊂ Rn

I Input constraints
U ⊂ Rn

I Output constraints
Y ⊂ Rn

I Time constraints (e.g.,delay, discrete-time communication)
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Systems with Constraints
State-Space Constraints

Example

I Real constraint

ẋ = π⊥(x)u

s.th. π⊥(x) := I − xx>.

I Design constraint

ẋ = u

u = π⊥(x)v

x(t0)

x(t)

X = Sn

0

Rigid link

x(t0)

x(t)

X = Sn

0
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ẋ = u

u = π⊥(x)v

x(t0)

x(t)

X = Sn

0

Rigid link

x(t0)

x(t)

X = Sn

0

7 / 51



Systems with Constraints
Control of Systems with State-Constraints

Consider the constrained system

ẋ = f (x , u) x ∈ X

Objective (Control)

Design a control law u(·) such that x = 0 is a globally
asymptotically (exponentially) stable equilibrium.
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Systems with Constraints
Observer Design for Systems with State-Constraints

Consider the dynamical system

ẋ = f (x , u) x ∈ X
y = h(x)

Objective (Estimation)

Design an estimation law for x̂ such that x − x̂ = 0 a globally
asymptotically (exponentially) stable equilibrium and

x̂ ∈ X̂ ⊇ X , for all times.

I X̂ = X : strictly constrained estimation

I X̂ ⊃ X : constrained estimation

I X̂ = Rn: non-constrained estimation
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Topological Incompatibility
State-Space vs. Control Objective

Let f ∈ C1(Rn) and

ẋ = f (x), x ∈ X (1)

Fact (Theorem 2.2 from 1)

The domain of asymptotic stability of any critical point of (1) is
diffeomorphic to Rm for some m ≥ 0.

Corollary

If X and Rm are not topologically equivalent (not the same
“shape”) then global asymptotic stability is not possible.

1F. W. Wilson (1967). The structure of the level surfaces of a Lyapunov
function.Journal of Differential Equations.
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Topological Incompatibility
State-Space vs. Control Objective

Example (Non-simply connected X )

I X = Rn \ O is non-simply connected

I Rm is simply connected ∀m

O

x(0)

x(t)
0

Corollary

Topological obstruction to GAS on non-simply connected spaces.
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Topological Incompatibility
State-Space vs. Control Objective

Example (Non-contractible X )

I Compact manifolds are non-contractible

I Rn is contractible

x(t0)

x(t)

X = Sn

0

Corollary

Topological obstruction to GAS on non-contractible2 spaces.

2M is contractible if there exists a continuous map h :M× [0, 1]→M
and x0 ∈M such that h(x , 0) = x and h(x , 1) = x0 for all x ∈M.
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Topological Incompatibility
State-Space vs. Control Objective

Example (Control on S1)

I Kinematics on S1{
ẋ1 = −ωx2
ẋ2 = ωx1

I Discontinuous Controller

ω = −sign(x2) arccos(x1)

with

sign(x2) :=

{
1 x2 ≥ 0

−1 x2 < 0

14 / 51
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Topological Incompatibility
State-Space vs. Control Objective

Fact (C. Mayhew et al. 20113)

If a compact set can not be globally asymptotically stabilized by
continuous feedback then it can not be robustly asymptotically
globally stabilized by discontinuous feedback either.

⇒ We need either:

I Time-Varying Feedback

3Mayhew, C. G., and Teel, A. R. (2011). On the topological structure of
attraction basins for differential inclusions. Systems & Control Letters, 60(12),
1045-1050.
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Fact (C. Mayhew et al. 20113)

If a compact set can not be globally asymptotically stabilized by
continuous feedback then it can not be robustly asymptotically
globally stabilized by discontinuous feedback either.

⇒ We need either:

I Hybrid Feedback

I Time-Varying Feedback (open problem)

3Mayhew, C. G., and Teel, A. R. (2011). On the topological structure of
attraction basins for differential inclusions. Systems & Control Letters, 60(12),
1045-1050.
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Hybrid Systems Framework

{
ẋ ∈ F(x) x ∈ F
x+ ∈ J(x) x ∈ J

I state: x ∈ Rn

I flow map: F : Rn ⇒ Rn

I flow set: F ⊆ Rn

I jump map: J : Rn ⇒ Rn

I jump set: J ⊆ Rn

FJ
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ẋ ∈ F(x) x ∈ F
x+ ∈ J(x) x ∈ J

I state: x ∈ Rn

I flow map: F : Rn ⇒ Rn

I flow set: F ⊆ Rn

I jump map: J : Rn ⇒ Rn

I jump set: J ⊆ Rn

FJ

17 / 51



Hybrid Systems Framework

{
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ẋ ∈ F(x) x ∈ F
x+ ∈ J(x) x ∈ J

I state: x ∈ Rn

I flow map: F : Rn ⇒ Rn

I flow set: F ⊆ Rn

I jump map: J : Rn ⇒ Rn

I jump set: J ⊆ Rn

FJ

17 / 51



Hybrid Systems Framework

{
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Hybrid Systems Framework
Hybrid Time Domains

{
ẋ ∈ F(x) x ∈ F
x+ ∈ J(x) x ∈ J

Hybrid time domain

(t, j) ∈ H ⊆ R≥0 × N

I t: amount of time passed

I j : number of jumps occurred

FJ
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Hybrid Systems Framework
Motivation Example on S1

I Kinematics on S1

ẋ = S(ω)x

Let q ∈ {1, 2} and cq ∈ Cq ⊂ S1.{
ẋ = S(κq(x))x

q̇ = 0
x ∈ S1 \ Cq{

x+ = x

q+ = 3− q
x ∈ Cq

19 / 51
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Hybrid Attitude Stabilization on SO(3)
Problem Formulation

Consider the attitude kinematics

Ṙ = R[ω]×, R(0) ∈ SO(3)

where R is the attitude and ω ∈ R3 is the angular velocity.

Objective

Design ω such that R = I3 is
globally exponentially stable.
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Hybrid Attitude Stabilization on SO(3)
Potential Functions

I q ∈ Q is a discrete variable (controller mode)

Definition

Φ(R, q) is a potential function if

- Continuous

- Continuously differentiable on
D ⊆ SO(3)×Q

- Positive definite w.r.t {I} × Q

22 / 51



Hybrid Attitude Stabilization
Exp-synergistic Potential Functions

I F := {(R, q) : Φ(R, q)−minm∈QΦ(R,m) ≤ δ}

Definition

Φ is exp-synergistic with gap exceeding δ > 0 iff:

α1|R|2I ≤ Φ(R, q) ≤ α2|R|2I ∀(R, q) ∈ SO(3)×Q
α3|R|2I ≤ ‖∇Φ(R, q)‖2F ≤ α4|R|2I ∀(R, q) ∈ F

F ⊆ D

I Both Φ and ∇Φ are quadratic in |R|I := ‖I − R‖F/
√

8

I Possible singular/critical points are outside the flow set F

23 / 51



Hybrid Attitude Stabilization
Exp-synergistic Potential Functions

I F := {(R, q) : Φ(R, q)−minm∈QΦ(R,m) ≤ δ}

Definition

Φ is exp-synergistic with gap exceeding δ > 0 iff:

α1|R|2I ≤ Φ(R, q) ≤ α2|R|2I ∀(R, q) ∈ SO(3)×Q
α3|R|2I ≤ ‖∇Φ(R, q)‖2F ≤ α4|R|2I ∀(R, q) ∈ F

F ⊆ D

I Both Φ and ∇Φ are quadratic in |R|I := ‖I − R‖F/
√

8

I Possible singular/critical points are outside the flow set F

23 / 51



Hybrid Attitude Stabilization
Synergistic Hybrid Feedback

I Hybrid controller

ω = −(R>∇Φ(R, q))∨

q̇ = 0 (R, q) ∈ F
q+ ∈ arg min

m∈Q
Φ(R,m) (R, q) ∈ J

Theorem

If Φ is exp-synergistic with gap
exceeding δ then the set {I} × Q
is globally exponentially stable.

F

SO(3)×Q

J
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Hybrid Attitude Stabilization
Construction of exp-synergistic potential functions

For example45, consider

Ψ(R) := tr(A(I − R)), A = A> > 0.

Consider the map (angular warping2)

Γ(R, q) := R exp(θ(R, q)[u(q)]×)

Theorem

Under some suitable θ(R, q) and u(q), the potential function Ψ ◦ Γ
is exp-synergistic with a given gap δ.

4Berkane, S., Abdessameud, A., and Tayebi, A. (2017). Hybrid global
exponential stabilization on SO(3). Automatica, 81, 279-285.

5Berkane, S., Abdessameud, A., and Tayebi, A. (2018). Hybrid Output
Feedback For Attitude Tracking on SO(3). IEEE Transactions on Automatic
Control.
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Obstacle Avoidance Problem

I Artificial potential fields
suffer from local minima

I Navigation functions are not
correct-by-construction
(require tuning)

I Resulting feedback is
strongly invasive

0

x(0)
O1

O2

O3

O4

O5

Target state Initial state

O6

O7
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Obstacle Avoidance via Hybrid Feedback
Problem Formulation

Consider the dynamics

ẋ = u, x(0) ∈ Rn \ O

with the objective to globally asymptotically stabilize x = 0 while
avoiding the obstacle

O := {x ∈ Rn : ‖x − c‖ ≤ ε}.

O

c

ε

27 / 51



Obstacle Avoidance via Hybrid Feedback
Control Input

The control law has three modes

u = κ(x ,m) :=

{
−k0x , m = 0

−kmπ⊥(x − c)(x − pm), m ∈ {−1, 1}

I Stabilization mode (m = 0)

I Avoidance modes (m = −1, 1) guarantee that

d‖x − c‖2

dt
= −km(x − c)>π⊥(x − c)(x − pm) = 0

⇒ safe avoidance

28 / 51
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Obstacle Avoidance via Hybrid Feedback
Construction of the Stabilization Flow and Jump Sets

Under the feedback −k0x , what is the unsafe region?

d‖x − c‖2

dt
= −2k0x

>(x − c) ≤ 0⇐⇒ ‖x − c/2‖2 ≥ ‖c/2‖2 .

J0: safety helmet

We need to jump to the
avoidance mode when x ∈ J0

0

B‖ c2‖(
c
2)

O

J0

29 / 51
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Obstacle Avoidance via Hybrid Feedback
Construction of the Stabilization Flow and Jump Sets

Stabilization flow set F0 and jump set J0

J0F0

O O
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Obstacle Avoidance via Hybrid Feedback
Construction of the Avoidance Flow and Jump Sets

I p1, p−1 are auxiliary
attractive points

I The equilibria of the
avoidance mode lie in the
jump sets Jm,m = −1, 1

F−1

F1

0 p1

p−1

J1

J−1
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Obstacle Avoidance via Hybrid Feedback
Closed-Loop Hybrid Dynamical System

{
ẋ = κ(x ,m)

ṁ = 0
(x ,m) ∈

⋃
m∈{−1,0,1}

Fm × {m} (2)

{
x+ = x

m+ ∈M(x ,m)
(x ,m) ∈

⋃
m∈{−1,0,1}

Jm × {m}. (3)

Theorem

I (Safety) (Rn \ O)× {−1, 0, 1} is forward invariant

I (Convergence) {0} × {0} is globally asymptotically stable

I (Preservation) there exist controller parameters such that u
matches −k0x almost everywhere

32 / 51
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Obstacle Avoidance via Hybrid Feedback

Simulation (3D scenario)

Figure 1: F1 (blue), J0 (red) and obstacle (gray)
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Obstacle Avoidance via Hybrid Feedback

Simulation (3D scenario)

Figure 1: F−1 (green), J0 (red) and obstacle (gray)
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Obstacle Avoidance via Hybrid Feedback

Simulation (3D scenario)

Figure 1: Different trajectories
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Obstacle Avoidance via Hybrid Feedback

I Preliminary work for single spherical obstacle 6

I We have extensions to multiple ellipsoid-shaped obstacles7

0

x(0)
O1

O2

O3

O4

O5

Target state Initial state

O6

O7

6S. Berkane, A. Bisoffi and D. V. Dimarogonas, “A Hybrid Controller for
Obstacle Avoidance in the n−Dimensional Euclidean Space”, submitted to
European Control Conference, 2019.

7Journal extension in preparation.
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Observer Design for Systems with State-Constraints

Objective (Estimation)

Design an estimation law for x̂ such that x − x̂ = 0 is globally
asymptotically stable and

x̂ ∈ X̂ ⊇ X for all times.

I X̂ = X : strictly constrained estimation

I X̂ ⊃ X : constrained estimation

I X̂ = Rn: non-constrained estimation
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Hybrid Attitude Estimation on SO(3)
Problem Formulation

Consider the attitude kinematics:

Ṙ = R[ω]×

with vector measurements on S2:

bi︸︷︷︸
measured

= R> ai︸︷︷︸
known

Objective

Estimate the rotation matrix R using gyro readings of ω and
vector measurements b1, · · · , bn with global exponential stability
of the estimation error.

37 / 51



Hybrid Attitude Estimation on SO(3)
Problem Formulation

Consider the attitude kinematics:
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Hybrid Attitude Estimation on SO(3)
Explicit Complementary Filter (ECF)

I Attitude estimation

˙̂R = R̂[ω + σ]×, R̂(0) ∈ SO(3)

I Strictly constrained since R̂(t) ∈ SO(3) for all times.

I Cost function

1

2

n∑
i=1

‖bi − R̂>ai‖2  gradient σ =
n∑

i=1

ρi (bi × R̂>ai )

Theorem (R. Mahony & T. Hamel)

Almost global asymptotic stability and local exponential stability.
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Hybrid Attitude Estimation on SO(3)
Motivation on S1

x1

x2

0◦
180◦

I State reset: x̂+ = R(θ)x̂

I Causes estimation error to decrease
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Hybrid Attitude Estimation on SO(3)
Motivation on S1

x1

x2

0◦
180◦ x1

x2

Jump set

Flow set

Attitude
before jump

Attitude
after (few) jump

I State reset: x̂+ = R(θ)x̂
I Causes estimation error to decrease
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Hybrid Attitude Estimation on SO(3)
Reset-based approach

I Attitude estimation

˙̂R = R̂[ω + σ]× ((bi )1···n, R̂) ∈ F̂
R̂+ = R(θuq)R̂ ((bi )1···n, R̂) ∈ Ĵ

I Innovation

(Cost function) Φ̂((bi )1···n, R̂) gradient σ = ŵ((bi )1···n, R̂)

I Flow and jump sets

F̂ = {Φ̂(·, R̂)−min
m

Φ̂(·,R(θuq)R̂) ≤ δ}

Ĵ = {Φ̂(·, R̂)−min
m

Φ̂(·,R(θuq)R̂) ≥ δ}

I θ ∈ R and q = argmin
m

Φ̂(·,R(θuq)R̂).
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Hybrid Attitude Estimation on SO(3)
Reset-based approach

Theorem (S. Berkane, PhD thesis 2017)

If we have

1. Φ̂ is quadratic

2. ‖∇Φ̂‖2F is quadratic on the flow set F̂
3. singular points of Φ̂ lie in the jump set Ĵ

then the zero estimation error is globally exponentially stable.

Example

I Take Φ =
∑n

i=1 ρi‖bi − R̂>ai‖2

I Pick θ = π and 0 < δ < λA1 + λA2 with A =
∑n

i=1 ρiaia
>
i

I Pick {u1, u2, u3} be an orthonormal set of eigenvectors of A
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Hybrid Attitude Estimation on SO(3)

I Attitude + gyro bias8: synergistic-based approach

I GPS-aided9: reset-based approach

I Full state10: attitude and angular velocity estimation,
synergistic-based approach

I Intermittent measurements11: sensors with different
sampling

8Berkane, S., Abdessameud, A., & Tayebi, A. (2017). Hybrid Attitude and
Gyro-Bias Observer Design on SO(3). IEEE TAC.

9Berkane, S. and Tayebi, A. (2017). Attitude and gyro bias estimation using
GPS and IMU measurements. IEEE CDC.

10Berkane, S., Abdessameud, A., & Tayebi, A. (2018). Hybrid Output
Feedback For Attitude Tracking on SO (3). IEEE TAC.

11Berkane, S. and Tayebi, A. (2018). Attitude Estimation with Intermittent
Measurements. Automatica.
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Observer Design for Systems with State-Constraints

Objective (Estimation)

Design an estimation law for x̂ such that x − x̂ = 0 is globally
asymptotically stable and

x̂ ∈ X̂ ⊇ X for all times.

I X̂ = X : strictly constrained estimation

I X̂ ⊃ X : constrained estimation

I X̂ = Rn: non-constrained estimation
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Hybrid Constrained Estimation For LTV Systems
System Model

Consider the LTV system

ẋ = A(t)x + B(t)u(t)

y = C (t)x

I x is constrained to evolve on the set

D(t, y) := {x ∈ Rn : D(t, y)x = d(t, y)}

D(t, y)x(t)
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Hybrid Constrained Estimation For LTV Systems
Estimation Objective

Objective

Design an estimator for x̂ s.th. x̂ ∈ Ω̂(t, y) ⊃ D(t, y) for all times.

D(t, y)x(t)

Ω̂(t, y)

I (Part of) the output equation C (t)x = y can be used as a
constraint in D(t, y)x = d(t, y).
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Hybrid Constrained Estimation For LTV Systems
Proposed Hybrid Observer

We propose the following hybrid observer:

˙̂x = A(t)x̂ + B(t)u(t) + K (t)(y − C (t)x̂), x̂ ∈ F̂(t, y)

x̂+ = PD(t,y)(x̂), x̂ ∈ Ĵ (t, y)

I K (t): from a Riccati equation.

I PD(x̂): projection operator on Dx̂ = d given by

PD(x̂) := x̂ − PD>(DPD>)−1(Dx̂ − d)

for some positive definite matrix P.
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Hybrid Constrained Estimation For LTV Systems
Design of the Flow and Jump Sets

I (Objective): F̂(t, y) ⊂ Ω̂(t, y)

I (Complete): dist(Ĵ (t, y), D̂(t, y)) > 0

I (Global): F̂(t, y) ∪ Ĵ (t, y) = Rn
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Design of the Flow and Jump Sets
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I (Complete): dist(Ĵ (t, y), D̂(t, y)) > 0

I (Global): F̂(t, y) ∪ Ĵ (t, y) = Rn

Example

D(t, y)

Ω̂(t, y)

F̂(t, y)

Ĵ (t, y)
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Hybrid Constrained Estimation For LTV Systems
Design of the Flow and Jump Sets

I (Objective): F̂(t, y) ⊂ Ω̂(t, y)

I (Complete): dist(Ĵ (t, y), D̂(t, y)) > 0

I (Global): F̂(t, y) ∪ Ĵ (t, y) = Rn

Theorem

Global exponential stability of the zero estimation error.
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Hybrid Constrained Estimation For LTV Systems
Simulation Scenario

Simulation (A vehicle moving on a road with angle θ)

Let

ẋ =

[
0 I
0 0

]
x +

[
0
I

]
u(t)

y =
[
I 0

]
x

with

u(t) =

[
cos(θ)
sin(θ)

]
v(t)

which leads to the constraint[
sin(θ) − cos(θ) 0 0

]>
x(t) = 0.
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Hybrid Constrained Estimation For LTV Systems
Simulation Scenario

Simulation (A vehicle moving on a road with angle θ)

I Objective set

Ω̂ = {x̂ ∈ R4 : | sin(θ)x̂1 − cos(θ)x̂2| ≤ µ}.

I Flow set

F̂ = {x̂ ∈ R4 : | sin(θ)x̂1 − cos(θ)x̂2| ≤ ε}.

I Jump set

Ĵ = {x̂ ∈ R4 : | sin(θ)x̂1 − cos(θ)x̂2| ≥ ε}.

with 0 < ε < µ.
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Hybrid Constrained Estimation For LTV Systems
Simulation Scenario

Simulation (A vehicle moving on a road with angle θ)
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Conclusion

I Systems with constraints present topological difficulties

I Hybrid systems tools are promising for the control &
estimation of systems with constraints

I Future work needed for complex and multirobotic systems
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