# Nonlinear Estimation for Position-Aided Inertial Navigation Systems 

Soulaimane Berkane 1,2 Abdelhamid Tayebi 2,3
${ }^{1}$ University of Quebec in Outaouais

${ }^{2}$ Lakehead University<br>${ }^{3}$ University of Western Ontario

IEEE Conference on Decision and Control, Dec 13-17, 2021

## Problem Formulation

## Kinematics

Kinematics of a rigid-body vehicle:

$$
\left\{\begin{aligned}
\dot{p} & =v, \\
\dot{v} & =g+a_{l}, \\
\dot{R} & =R[\omega]_{\times},
\end{aligned}\right.
$$



- $p \in \mathbb{R}^{3}$ : inertial position of the vehicle's center of gravity
- $v \in \mathbb{R}^{3}$ : inertial linear velocity
- $R \in \mathbb{S O}(3)$ : rotation matrix of $\{B\}$ with respect to $\{I\}$
- $\omega \in \mathbb{R}^{3}$ : angular velocity expressed in $\{B\}$
- $g$ : acceleration due to gravity
- $a_{I}$ : "apparent acceleration", capturing all non-gravitational forces applied to the vehicle, expressed in $\{I\}$.


## Problem Formulation



Inertial measurement unit (IMU):

$$
\begin{align*}
\omega^{y} & =\omega+b_{\omega},  \tag{1}\\
a_{B} & =R^{\top} a_{l},  \tag{2}\\
m_{B} & =R^{\top} m_{l}, \tag{3}
\end{align*}
$$

- $b_{\omega}$ : a constant unknown gyro bias
- $m_{l}$ : a constant and know earth's magnetic field

Assumption
There exists a constant $c_{0}>0$ such that $\left\|m_{l} \times a_{l}(t)\right\| \geq c_{0}$ for all $t \geq 0$.

## Problem Formulation

## Position measurements



Position output vector:

$$
\begin{equation*}
y=C_{p} p \tag{4}
\end{equation*}
$$

- $C_{p}$ : constant and known $(m \times 3)$ output matrix

Assumption
$\operatorname{rank}\left(C_{p}\right)=3$.

## Problem Formulation

Objective

$5 / 19$

## Translational Dynamics

Let $x:=(p, v) \in \mathbb{R}^{6}$. The dynamics of $x$ are written as:

$$
\begin{align*}
& \dot{x}=A x+B\left(g+a_{l}\right),  \tag{5}\\
& y=C x, \tag{6}
\end{align*}
$$

where the matrices $A, B$ and $C$ are defined as follows:

$$
A=\left[\begin{array}{cc}
0_{3 \times 3} & I_{3}  \tag{7}\\
0_{3 \times 3} & 0_{3 \times 3}
\end{array}\right], B:=\left[\begin{array}{c}
0_{3 \times 3} \\
I_{3}
\end{array}\right], C=\left[\begin{array}{c}
C_{p}^{\top} \\
0_{3 \times m}
\end{array}\right]^{\top} .
$$

- Linear time-invariant system with unknown input $a_{l}$
- We only measure $a_{B}=R^{\top} a_{l}$ (in body-frame)


## Common estimation approach (ad-hoc method)

## Assumption

Negligible acceleration, i.e., $a_{\jmath} \approx-g$.


## Common estimation approach (ad-hoc method ${ }^{1}$ )

## Assumption

Negligible acceleration, i.e., $a_{।} \approx-g$.

Attitude observer $\left\{\begin{array}{l}\dot{\hat{R}}=\hat{R}\left[\omega_{y}-\hat{b}_{\omega}+k_{R} \sigma_{R}\right]_{\times}, \\ \dot{\hat{b}}_{\omega}=\operatorname{Proj}\left(\hat{b}_{\omega},-k_{b} \sigma_{R}\right), \\ \sigma_{R}=\rho_{1}\left(m_{B} \times \hat{R}^{\top} m_{l}\right)+\rho_{2}\left(a_{B} \times \hat{R}^{\top}(-g)\right) .\end{array}\right.$

Translational Observer $\left\{\begin{array}{l}\dot{\hat{x}}=A \hat{x}+B\left(g+\hat{R} a_{B}\right)+K(y-C \hat{x}) \\ (A-K C) \text { is Hurwitz }\end{array}\right.$
${ }^{1}$ R. Mahony, T. Hamel and J. Pflimlin, "Nonlinear Complementary Filters on the Special Orthogonal Group," in IEEE TAC, 2008.
H. F. Grip et al. "Attitude Estimation Using Biased Gyro and Vector Measurements With Time-Varying Reference Vectors," in IEEE TAC, 2012.

## Proposed estimation approach



- The proposed observer introduces coupling (in red) between the translational estimator and the rotational estimator through their innovation terms.
- This additional coupling is important to guarantee the stability of the observer without the "small" acceleration assumption.


## Translational Motion Observer

Let $K=L_{\gamma} K_{0}$ with $L_{\gamma}=\operatorname{blockdiag}\left(\gamma I_{3}, \gamma^{2} I_{3}\right)$ and $\gamma \geq 1$ :

$$
\left\{\begin{array}{l}
\dot{\hat{x}}=A \hat{x}+B\left(g e_{3}+\hat{R} a_{B}\right)+K(y-C \hat{x})+\sigma_{x}, \\
\sigma_{x}=-k_{R}(A-K C)^{-1} B\left[\hat{R} \sigma_{R}\right]_{\times} \hat{R} a_{B}, \\
\left(A-K_{0} C\right) \text { is Hurwitz }
\end{array}\right.
$$

- If $\hat{R} \rightarrow R$, this is equivalent to the Luenberger-type observer.
- The matrix $L_{\gamma}$ is introduced to assign a certain time-scaling structure between the different estimation errors.


## Rotational Motion Observer

Consider the "nonlinear complementary filter"-type observer ${ }^{2}$

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{\hat{R}}=\hat{R}\left[\omega^{y}-\hat{b}_{\omega}+k_{R} \sigma_{R}\right]_{\times} \\
\hat{\hat{b}}_{\omega}=\operatorname{Proj}\left(\hat{b}_{\omega},-k_{R} \sigma_{R}\right)
\end{array}\right. \\
\sigma_{R}=\rho_{1}\left(m_{B} \times \hat{R}^{\top} m_{l}\right)+\rho_{2}\left(a_{B} \times \hat{R}^{\top} \boldsymbol{\operatorname { s a t }}\left(B^{\top} K(y-C \hat{x})\right)\right) .
\end{gathered}
$$

- Proj: is the parameter projection function
- sat: is a saturation function

[^0]
## Main Result

## Assumption

- $m_{l}$ and $a_{l}(t)$ are not collinear for all times
- $\omega, b_{\omega}, a_{l}, \dot{a}_{l}$ are uniformly bounded


## Theorem (Semi-global exponential stability)

For all initial conditions (except attitude errors at $180^{\circ}$ ), there exist (high) gains such that the estimation error converges exponentially to zero.

- Although, sufficiently large gains are needed in the proof, simulation results demonstrate that this is very conservative.
- To prove the convergence of the estimation errors, we introduce the following auxiliary error variable

$$
\begin{equation*}
\zeta:=L_{\gamma}^{-1}\left[(A-K C) \tilde{x}+B(I-\tilde{R})^{\top} a_{l}\right] \tag{8}
\end{equation*}
$$

## Simulation Results

Range measurements (e.g., Ultra-wide-Band (UWB))


## Simulation Results

## Range measurements (e.g., Ultra-wide-Band (UWB))

At least 4 non-coplanar source points are needed located at $a_{i}$.

$$
d_{i}=\left\|p-a_{i}\right\|, \quad i=1, \cdots, n
$$

Output equation:

$$
\begin{gather*}
y_{i}:=\frac{1}{2}\left(d_{i}^{2}-d_{1}^{2}-\left\|a_{i}\right\|^{2}+\left\|a_{1}\right\|^{2}\right), \quad i=2, \cdots, n . \\
y=\left[\begin{array}{c}
\left(p_{1}-a_{2}\right)^{\top} \\
\vdots \\
\left(p_{1}-a_{n}\right)^{\top}
\end{array}\right] p:=C_{p} p \tag{9}
\end{gather*}
$$

## Simulation Results

## Range measurements (e.g., Ultra-wide-Band (UWB))

- Circular trajectory (with acceleration):

$$
p(t)=\left[\begin{array}{c}
\cos \left(2 \pi t^{2} / 100\right)  \tag{10}\\
\sin \left(2 \pi t^{2} / 100\right) \\
1
\end{array}\right]
$$

- Angular velocity:

$$
\omega(t)=\left[\begin{array}{c}
\sin (0.2 t)  \tag{11}\\
\cos (0.1 t) \\
\sin (0.3 t+\pi / 6)
\end{array}\right],
$$

- Anchors:

$$
\begin{align*}
& a_{1}=\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right]^{\top},  \tag{12}\\
& a_{2}=\left[\begin{array}{lll}
1 & 3 & 0
\end{array}\right]^{\top},  \tag{13}\\
& a_{3}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]^{\top},  \tag{14}\\
& a_{4}=\left[\begin{array}{lll}
6 & 5 & 5
\end{array}\right]^{\top} . \tag{15}
\end{align*}
$$

## Simulation Results

Range measurements (e.g., Ultra-wide-Band (UWB))


Figure 1: As the acceleration increases, the adhoc estimator drifts away from the true trajectory while the proposed estimator is stable. URL: https://youtu.be/zbkSDZgh3vU

## Simulation Results

Range measurements (e.g., Ultra-wide-Band (UWB))


Figure 2: Position estimation errors.

## Conclusion

- A nonlinear navigation observer with semi-global exponential stability
- Suitable in applications with non-negligible linear accelerations where the traditional cascaded approach fails
- Does not require the introduction of auxiliary states compared to previous works


## Conclusion

- A nonlinear navigation observer with semi-global exponential stability
- Suitable in applications with non-negligible linear accelerations where the traditional cascaded approach fails
- Does not require the introduction of auxiliary states compared
to previous works


## Conclusion

- A nonlinear navigation observer with semi-global exponential stability
- Suitable in applications with non-negligible linear accelerations where the traditional cascaded approach fails
- Does not require the introduction of auxiliary states compared to previous works


## Thank you

## Questions?


[^0]:    ${ }^{2}$ R. Mahony, T. Hamel and J. Pflimlin, "Nonlinear Complementary Filters on the Special Orthogonal Group," in IEEE TAC, 2008.
    H. F. Grip, T. I. Fossen, T. A. Johansen and A. Saberi, "Attitude Estimation Using Biased Gyro and Vector Measurements With Time-Varying Reference Vectors," in IEEE TAC, 2012.

