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Problem Formulation
Kinematics

Kinematics of a rigid-body vehicle:
ṗ = v ,

v̇ = g + aI ,

Ṙ = R[ω]×,

I p ∈ R3: inertial position of the vehicle’s center of gravity

I v ∈ R3: inertial linear velocity

I R ∈ SO(3): rotation matrix of {B} with respect to {I}
I ω ∈ R3: angular velocity expressed in {B}
I g : acceleration due to gravity

I aI : “apparent acceleration”, capturing all non-gravitational
forces applied to the vehicle, expressed in {I}.
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Problem Formulation
Inertial sensors

Inertial measurement unit (IMU):

ωy = ω + bω, (1)

aB = R>aI , (2)

mB = R>mI , (3)

I bω: a constant unknown gyro bias
I mI : a constant and know earth’s magnetic field

Assumption

There exists a constant c0 > 0 such that ‖mI × aI (t)‖ ≥ c0 for all
t ≥ 0.
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Problem Formulation
Position measurements

Position output vector:

y = Cpp, (4)

I Cp: constant and known (m × 3) output matrix

Assumption

rank(Cp) = 3.
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Problem Formulation
Objective
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Translational Dynamics

Let x := (p, v) ∈ R6. The dynamics of x are written as:

ẋ = Ax + B(g + aI ), (5)

y = Cx , (6)

where the matrices A,B and C are defined as follows:

A =

[
03×3 I3
03×3 03×3

]
,B :=

[
03×3
I3

]
,C =

[
C>p

03×m

]>
. (7)

I Linear time-invariant system with unknown input aI
I We only measure aB = R>aI (in body-frame)
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Common estimation approach (ad-hoc method)

Assumption

Negligible acceleration, i.e., aI ≈ −g.
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Common estimation approach (ad-hoc method1)

Assumption

Negligible acceleration, i.e., aI ≈ −g.

Attitude observer


˙̂R = R̂[ωy − b̂ω + kRσR ]×,
˙̂bω = Proj(b̂ω,−kbσR),

σR = ρ1(mB × R̂>mI ) + ρ2(aB × R̂>(−g)).

Translational Observer

{
˙̂x = Ax̂ + B(g + R̂aB) + K (y − Cx̂)

(A− KC ) is Hurwitz

1R. Mahony, T. Hamel and J. Pflimlin, ”Nonlinear Complementary Filters
on the Special Orthogonal Group,” in IEEE TAC, 2008.
H. F. Grip et al. ”Attitude Estimation Using Biased Gyro and Vector
Measurements With Time-Varying Reference Vectors,” in IEEE TAC, 2012.
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Proposed estimation approach
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I The proposed observer introduces coupling (in red) between
the translational estimator and the rotational estimator
through their innovation terms.

I This additional coupling is important to guarantee the
stability of the observer without the ”small” acceleration
assumption.
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Translational Motion Observer

Let K = LγK0 with Lγ = blockdiag(γI3, γ
2I3) and γ ≥ 1:

˙̂x = Ax̂ + B(ge3 + R̂aB) + K (y − Cx̂) + σx ,

σx = −kR(A− KC )−1B[R̂σR ]×R̂aB ,

(A− K0C ) is Hurwitz

I If R̂ → R, this is equivalent to the Luenberger-type
observer.

I The matrix Lγ is introduced to assign a certain time-scaling
structure between the different estimation errors.
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Rotational Motion Observer

Consider the ”nonlinear complementary filter”-type observer2{
˙̂R = R̂[ωy − b̂ω + kRσR ]×
˙̂bω = Proj(b̂ω,−kRσR)

σR = ρ1(mB × R̂>mI ) + ρ2(aB × R̂>sat(B>K (y − Cx̂))).

I Proj: is the parameter projection function

I sat: is a saturation function

2R. Mahony, T. Hamel and J. Pflimlin, ”Nonlinear Complementary Filters
on the Special Orthogonal Group,” in IEEE TAC, 2008.
H. F. Grip, T. I. Fossen, T. A. Johansen and A. Saberi, ”Attitude Estimation
Using Biased Gyro and Vector Measurements With Time-Varying
Reference Vectors,” in IEEE TAC, 2012.
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Main Result

Assumption

I mI and aI (t) are not collinear for all times

I ω, bω, aI , ȧI are uniformly bounded

Theorem (Semi-global exponential stability)

For all initial conditions (except attitude errors at 180◦), there
exist (high) gains such that the estimation error converges
exponentially to zero.

I Although, sufficiently large gains are needed in the proof,
simulation results demonstrate that this is very conservative.

I To prove the convergence of the estimation errors, we
introduce the following auxiliary error variable

ζ := L−1γ

[
(A− KC )x̃ + B(I − R̃)>aI

]
. (8)
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Simulation Results
Range measurements (e.g., Ultra-wide-Band (UWB))
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Simulation Results
Range measurements (e.g., Ultra-wide-Band (UWB))

At least 4 non-coplanar source points are needed located at ai .

di = ‖p − ai‖, i = 1, · · · , n.

Output equation:

yi :=
1

2

(
d2
i − d2

1 − ‖ai‖2 + ‖a1‖2
)
, i = 2, · · · , n.

y =

(p1 − a2)>

...
(p1 − an)>

p := Cpp (9)
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Simulation Results
Range measurements (e.g., Ultra-wide-Band (UWB))

I Circular trajectory (with acceleration):

p(t) =

cos(2πt2/100)
sin(2πt2/100)

1

 . (10)

I Angular velocity:

ω(t) =

 sin(0.2t)
cos(0.1t)

sin(0.3t + π/6)

 , (11)

I Anchors:

a1 = [1 1 2]>, (12)

a2 = [1 3 0]>, (13)

a3 = [0 1 1]>, (14)

a4 = [6 5 5]>. (15)
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Simulation Results
Range measurements (e.g., Ultra-wide-Band (UWB))

Figure 1: As the acceleration increases, the adhoc estimator drifts away
from the true trajectory while the proposed estimator is stable. URL:
https://youtu.be/zbkSDZgh3vU
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Simulation Results
Range measurements (e.g., Ultra-wide-Band (UWB))
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Figure 2: Position estimation errors.
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Conclusion

I A nonlinear navigation observer with semi-global
exponential stability

I Suitable in applications with non-negligible linear
accelerations where the traditional cascaded approach fails

I Does not require the introduction of auxiliary states compared
to previous works
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Thank you

Questions?
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