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Motivation

Why do we need constrained estimation?

P Interconnection observer-controller where the controller is not
well defined in certain regions
> Meaningful state estimates
» Mass is positive
» In chemical processes concentrations and pressures are
nonnegative
» Quaternion representation (unit norm)
» Constraints provide additional information which can be used
in the estimator to speed up the convergence
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System Model

Linear Time-Varying System

Consider the LTV system

x = A(t)x + B(t)u(t)
y = C(t)x

> A(t), B(t), C(t) are C* functions, uniformly bounded with
bounded derivatives.

» The input u(+) is locally integrable.
» The pair (A(-), C(+)) is uniformly observable.
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Constraint Set

Linear Equality Constraints

» Assume that (t,y, x) is constrained to evolve on the set

={(t,y,x) : D(t,y)x = d(t,y)}

“at) e Du

Assumption
D(t,y) is full raw rank and D(t,y),d(t,y) are known, for all times
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Constraint Set

Linear Equality Constraints

» Assume that (t,y, x) is constrained to evolve on the set

={(t,y,x) : D(t,y)x = d(t,y)}

“at) e Du

Assumption
D(t,y) is full raw rank and D(t,y),d(t,y) are known, for all times

» All or some rows of the output equation C(t)x = y can be
used in the constraint D(t,y)x = d(t,y).
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Kalman-Bucy Estimator

» Consider the Luenberger-type observer
£ = A(t)% + B(t)u(t) + K(t)(y — C(t)R)
with K(t) = P(t)C(t)" Q(t) and
P=AP+PAT — PCTQCP +V

» We can show UGES

» However, there is no guarantee that X remains in a given
region of interest.
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Constrained Estimation Objective

Design a hybrid observer for X such that

(t,y,%) € for all times,

where Q D D is a given region of interest.

Qw{
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Projection on Linear Surfaces

» Weighed projection on the surface DX = d

Erg]ian(g )P He-8) st. DE=d

» Solution is given explicitly by
& =%—-PDT(DPD")"Y(Dx — d).

» Example with P = | (orthogonal projection)

.
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Proposed Hybrid Observer

We propose the following hybrid observer:

= A(t)R + B(t)u(t) + K(t)(y — C()R), (t,y,R)
£t :nP(t)()?v D(t>Y)>d(th))7 (t’Y>)A()
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Proposed Hybrid Observer

We propose the following hybrid observer:

> K(t) = P(t)C(t)" Q(t): optimal gain
» P(t): solution of the Riccati equation
» Mp(X,D,d): weighted projection operator on DX = d

Np(%,D,d) := % — PD"(DPD")~}(D% — d).
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Design of the Flow and Jump Sets
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Design of the Flow and Jump Sets

» The flow set is a subset of the target set

Fc
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Design of the Flow and Jump Sets

» The flow set is a subset of the target set
FcQ
> Strict decrease of the error during the jumps as long as

dist(J, D) >
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Design of the Flow and Jump Sets

» The flow set is a subset of the target set
Fcd
> Strict decrease of the error during the jumps as long as
dist(J, D) >
> Global observer

FUJ =Rsg x RP x R”
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Design of the Flow and Jump Sets

Example

11/16



Main Result

Theorem

The set A = {(t,x,X) : x = X} is uniformly globally asymptotically
stable and globally exponentially stable in the t—direction.
Moreover, (t,y(t),x,(t)) € Q for all times.

Proof.

» Lyapunov function V(t,x,%) = (x — X)TP(t)71(x — X)

» During the flows, \Yj < -)\V

» During the jumps, VT — V < —¢, as long as dist(j,ﬁ) >0

» Number of jumps is finite and every solution is complete

» Pre-asymptotic stability and completeness — uniform global
asymptotic stability.

> [X(t, /)4 < kexp(—A8)|X(0,0)[4.

> [X(t,))]a < £(1X(0,0)].4) exp(=A(t +))IX(0, 0)] 4.
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Simulation Scenario
Simulation (A vehicle moving on a road with angle 0)

Let x € R* such that (xi, x2) is the (measured) position and
(x3,xa) is the velocity. Second order dynamics:

sz ﬂx+[ﬂum
y=[h 0x

with

which leads to the constraint

[sin(f) —cos(d) O O]Tx(t):O.
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Simulation Scenario

Simulation (A vehicle moving on a road with angle 0)
» Objective set
Q={%eR*: [sin(d)% — cos(B)%a| < u}.
> Flow set
F={2eR*: |sin(h)% — cos(d)%a| < €}.
» Jump set
J = {8 € R*: |sin(h)% — cos(8)%a| > €}.

with 0 < € < p.
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Simulation Scenario

vid
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Conclusion
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Conclusion

» A hybrid observer is designed for the constrained state
estimation of LTV systems subject to linear equality
constraints
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Conclusion

» A hybrid observer is designed for the constrained state
estimation of LTV systems subject to linear equality
constraints

» Projection operator on surfaces is used to design the jump
map of the observer

» Future work for nonlinear systems with nonlinear/inequality
constraints
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Thank you!
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