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Motivation
Why do we need constrained estimation?

I Interconnection observer-controller where the controller is not
well defined in certain regions

I Meaningful state estimates
I Mass is positive
I In chemical processes concentrations and pressures are

nonnegative
I Quaternion representation (unit norm)

I Constraints provide additional information which can be used
in the estimator to speed up the convergence
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System Model
Linear Time-Varying System

Consider the LTV system

ẋ = A(t)x + B(t)u(t)

y = C (t)x

I A(t),B(t),C (t) are C1 functions, uniformly bounded with
bounded derivatives.

I The input u(·) is locally integrable.

I The pair (A(·),C (·)) is uniformly observable.
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Constraint Set
Linear Equality Constraints

I Assume that (t, y , x) is constrained to evolve on the set

D := {(t, y , x) : D(t, y)x = d(t, y)}

D↓xx(t)

Assumption

D(t, y) is full raw rank and D(t, y), d(t, y) are known, for all times

I All or some rows of the output equation C (t)x = y can be
used in the constraint D(t, y)x = d(t, y).
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Kalman-Bucy Estimator

I Consider the Luenberger-type observer

˙̂x = A(t)x̂ + B(t)u(t) + K (t)(y − C (t)x̂)

with K (t) = P(t)C (t)>Q(t) and

Ṗ = AP + PA> − PC>QCP + V

I We can show UGES

I However, there is no guarantee that x̂ remains in a given
region of interest.
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Constrained Estimation Objective

Objective

Design a hybrid observer for x̂ such that

(t, y , x̂) ∈ Ω̂ for all times,

where Ω̂ ⊃ D is a given region of interest.

D↓xx(t)

Ω̂↓x
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Projection on Linear Surfaces

I Weighed projection on the surface Dx̂ = d

min
ξ∈Rn

(ξ − x̂)>P−1(ξ − x̂) s.t. Dξ = d

I Solution is given explicitly by

ξ∗ = x̂ − PD>(DPD>)−1(Dx̂ − d).

I Example with P = I (orthogonal projection)

Dξ = d

x̂

ξ
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Proposed Hybrid Observer

We propose the following hybrid observer:

˙̂x = A(t)x̂ + B(t)u(t) + K (t)(y − C (t)x̂), (t, y , x̂) ∈ F̂ ,
x̂+ = ΠP(t)(x̂ ,D(t, y), d(t, y)), (t, y , x̂) ∈ Ĵ ,

I K (t) = P(t)C (t)>Q(t): optimal gain

I P(t): solution of the Riccati equation

I ΠP(x̂ ,D, d): weighted projection operator on Dx̂ = d

ΠP(x̂ ,D, d) := x̂ − PD>(DPD>)−1(Dx̂ − d).
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Design of the Flow and Jump Sets

I The flow set is a subset of the target set

F̂ ⊂ Ω̂

I Strict decrease of the error during the jumps as long as

dist(Ĵ , D̂) > 0

I Global observer

F̂ ∪ Ĵ = R≥0 × Rp × Rn
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dist(Ĵ , D̂) > 0

I Global observer
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Design of the Flow and Jump Sets

Example

D↓x

Ω̂↓x

F̂↓x

Ĵ↓x
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Main Result

Theorem

The set A = {(t, x , x̂) : x = x̂} is uniformly globally asymptotically
stable and globally exponentially stable in the t−direction.
Moreover, (t, y(t), x̂↓(t)) ∈ Ω̂ for all times.

Proof.

I Lyapunov function V(t, x , x̂) = (x − x̂)>P(t)−1(x − x̂)

I During the flows, V̇ ≤ −λV
I During the jumps, V+ − V ≤ −ε, as long as dist(Ĵ , D̂) > 0

I Number of jumps is finite and every solution is complete

I Pre-asymptotic stability and completeness → uniform global
asymptotic stability.

I |X (t, j)|A ≤ k exp(−λt)|X (0, 0)|A.

I |X (t, j)|A ≤ κ(|X (0, 0)|A) exp(−λ(t + j))|X (0, 0)|A.
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Simulation Scenario

Simulation (A vehicle moving on a road with angle θ)

Let x ∈ R4 such that (x1, x2) is the (measured) position and
(x3, x4) is the velocity. Second order dynamics:

ẋ =

[
0 I2
0 0

]
x +

[
0
I2

]
u(t)

y =
[
I2 0

]
x

with

u(t) =

[
cos(θ)
sin(θ)

]
v(t)

which leads to the constraint[
sin(θ) − cos(θ) 0 0

]>
x(t) = 0.

13 / 16



Simulation Scenario

Simulation (A vehicle moving on a road with angle θ)

I Objective set

Ω̂ = {x̂ ∈ R4 : | sin(θ)x̂1 − cos(θ)x̂2| ≤ µ}.

I Flow set

F̂ = {x̂ ∈ R4 : | sin(θ)x̂1 − cos(θ)x̂2| ≤ ε}.

I Jump set

Ĵ = {x̂ ∈ R4 : | sin(θ)x̂1 − cos(θ)x̂2| ≥ ε}.

with 0 < ε < µ.

13 / 16



Simulation Scenario

vid
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Conclusion

I A hybrid observer is designed for the constrained state
estimation of LTV systems subject to linear equality
constraints

I Projection operator on surfaces is used to design the jump
map of the observer

I Future work for nonlinear systems with nonlinear/inequality
constraints
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Thank you!
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