Hybrid Constrained Estimation For Linear Time-Varying Systems

Soulaimane Berkane ${ }^{1} \quad$ Abdelhamid Tayebi ${ }^{2}$ Andrew Teel ${ }^{3}$

${ }^{1}$ KTH Royal Institute of Technology

${ }^{2}$ Lakehead University
${ }^{3}$ University of California, Santa Barbara

December 19, 2018

ـ

$1 / 16$

Outline

Motivation

Problem Formulation

Projection on Linear Surfaces

Hybrid Constrained Observer

Simulation Example

Conclusion

Motivation

Why do we need constrained estimation?

- Interconnection observer-controller where the controller is not well defined in certain regions
- Meaningful state estimates
- Mass is positive
- In chemical processes concentrations and pressures are nonnegative
- Quaternion representation (unit norm)
- Constraints provide additional information which can be used in the estimator to speed up the convergence

System Model

Linear Time-Varying System

Consider the LTV system

$$
\begin{aligned}
& \dot{x}=A(t) x+B(t) u(t) \\
& y=C(t) x
\end{aligned}
$$

- $A(t), B(t), C(t)$ are \mathcal{C}^{1} functions, uniformly bounded with bounded derivatives.
- The input $u(\cdot)$ is locally integrable.
- The pair $(A(\cdot), C(\cdot))$ is uniformly observable.

Constraint Set

Linear Equality Constraints

- Assume that (t, y, x) is constrained to evolve on the set

$$
\mathcal{D}:=\{(t, y, x): D(t, y) x=d(t, y)\}
$$

Assumption
$D(t, y)$ is full raw rank and $D(t, y), d(t, y)$ are known, for all times

Constraint Set

Linear Equality Constraints

- Assume that (t, y, x) is constrained to evolve on the set

$$
\mathcal{D}:=\{(t, y, x): D(t, y) x=d(t, y)\}
$$

Assumption
$D(t, y)$ is full raw rank and $D(t, y), d(t, y)$ are known, for all times

- All or some rows of the output equation $C(t) x=y$ can be used in the constraint $D(t, y) x=d(t, y)$.

Kalman-Bucy Estimator

- Consider the Luenberger-type observer

$$
\dot{\hat{x}}=A(t) \hat{x}+B(t) u(t)+K(t)(y-C(t) \hat{x})
$$

with $K(t)=P(t) C(t)^{\top} Q(t)$ and

$$
\dot{P}=A P+P A^{\top}-P C^{\top} Q C P+V
$$

- We can show UGES
- However, there is no guarantee that \hat{x} remains in a given region of interest.

Constrained Estimation Objective

Objective

Design a hybrid observer for \hat{x} such that

$$
(t, y, \hat{x}) \in \hat{\Omega} \quad \text { for all times }
$$

where $\hat{\Omega} \supset \mathcal{D}$ is a given region of interest.

Projection on Linear Surfaces

- Weighed projection on the surface $D \hat{x}=d$

$$
\min _{\xi \in \mathbb{R}^{n}}(\xi-\hat{x})^{\top} P^{-1}(\xi-\hat{x}) \quad \text { s.t. } D \xi=d
$$

- Solution is given explicitly by

$$
\xi^{*}=\hat{x}-P D^{\top}\left(D P D^{\top}\right)^{-1}(D \hat{x}-d)
$$

- Example with $P=I$ (orthogonal projection)

Proposed Hybrid Observer

We propose the following hybrid observer:

$$
\begin{aligned}
\dot{\hat{x}} & =A(t) \hat{x}+B(t) u(t)+K(t)(y-C(t) \hat{x}), & & (t, y, \hat{x}) \in \hat{\mathcal{F}}, \\
\hat{x}^{+} & =\Pi_{P(t)}(\hat{x}, D(t, y), d(t, y)), & & (t, y, \hat{x}) \in \hat{\mathcal{J}},
\end{aligned}
$$

- $K(t)=P(t) C(t)^{\top} Q(t)$: optimal gain
- $P(t)$: solution of the Riccati equation
$\Rightarrow \Pi_{P}(\hat{x}, D, d)$: weighted projection operator on $D \hat{x}=d$

$$
\Pi_{P}(\hat{x}, D, d):=\hat{x}-P D^{\top}\left(D P D^{\top}\right)^{-1}(D \hat{x}-d) .
$$

Proposed Hybrid Observer

We propose the following hybrid observer:

$$
\begin{aligned}
\dot{\hat{x}} & =A(t) \hat{x}+B(t) u(t)+K(t)(y-C(t) \hat{x}), & & (t, y, \hat{x}) \in \hat{\mathcal{F}}, \\
\hat{x}^{+} & =\Pi_{P(t)}(\hat{x}, D(t, y), d(t, y)), & & (t, y, \hat{x}) \in \hat{\mathcal{J}},
\end{aligned}
$$

- $K(t)=P(t) C(t)^{\top} Q(t)$: optimal gain

$$
\Pi_{P}(\hat{x}, D, d):=\hat{x}-P D^{\top}\left(D P D^{\top}\right)^{-1}(D \hat{x}-d) .
$$

Proposed Hybrid Observer

We propose the following hybrid observer:

$$
\begin{aligned}
\dot{\hat{x}} & =A(t) \hat{x}+B(t) u(t)+K(t)(y-C(t) \hat{x}), & & (t, y, \hat{x}) \in \hat{\mathcal{F}}, \\
\hat{x}^{+} & =\Pi_{P(t)}(\hat{x}, D(t, y), d(t, y)), & & (t, y, \hat{x}) \in \hat{\mathcal{J}},
\end{aligned}
$$

- $K(t)=P(t) C(t)^{\top} Q(t)$: optimal gain
- $P(t)$: solution of the Riccati equation

$$
\Pi_{P}(\hat{x}, D, d):=\hat{x}-P D^{\top}\left(D P D^{\top}\right)^{-1}(D \hat{x}-d) .
$$

Proposed Hybrid Observer

We propose the following hybrid observer:

$$
\begin{aligned}
\dot{\hat{x}} & =A(t) \hat{x}+B(t) u(t)+K(t)(y-C(t) \hat{x}), & & (t, y, \hat{x}) \in \hat{\mathcal{F}}, \\
\hat{x}^{+} & =\Pi_{P(t)}(\hat{x}, D(t, y), d(t, y)), & & (t, y, \hat{x}) \in \hat{\mathcal{J}},
\end{aligned}
$$

- $K(t)=P(t) C(t)^{\top} Q(t)$: optimal gain
- $P(t)$: solution of the Riccati equation
- $\Pi_{P}(\hat{x}, D, d)$: weighted projection operator on $D \hat{x}=d$

$$
\Pi_{P}(\hat{x}, D, d):=\hat{x}-P D^{\top}\left(D P D^{\top}\right)^{-1}(D \hat{x}-d) .
$$

Design of the Flow and Jump Sets

- The flow set is a subset of the target set

\rightarrow Strict decrease of the error during the jumps as long as

$$
\operatorname{dist}(\hat{J}, \hat{D})>0
$$

- Global observer

$$
\hat{\mathcal{F}} \cup \hat{\mathcal{J}}=\mathbb{R}_{\geq 0} \times \mathbb{R}^{p} \times \mathbb{R}^{n}
$$

Design of the Flow and Jump Sets

- The flow set is a subset of the target set

$$
\hat{\mathcal{F}} \subset \hat{\Omega}
$$

- Strict decrease of the error during the jumps as long as

- Global observer

$$
\hat{\mathcal{F}} \cup \hat{\mathcal{J}}=\mathbb{R} \geq 0 \times \mathbb{R}^{p} \times \mathbb{R}^{n}
$$

Design of the Flow and Jump Sets

- The flow set is a subset of the target set

$$
\hat{\mathcal{F}} \subset \hat{\Omega}
$$

- Strict decrease of the error during the jumps as long as

$$
\operatorname{dist}(\hat{\mathcal{J}}, \hat{\mathcal{D}})>0
$$

- Global observer

Design of the Flow and Jump Sets

- The flow set is a subset of the target set

$$
\hat{\mathcal{F}} \subset \hat{\Omega}
$$

- Strict decrease of the error during the jumps as long as

$$
\operatorname{dist}(\hat{\mathcal{J}}, \hat{\mathcal{D}})>0
$$

- Global observer

$$
\hat{\mathcal{F}} \cup \hat{\mathcal{J}}=\mathbb{R}_{\geq 0} \times \mathbb{R}^{p} \times \mathbb{R}^{n}
$$

Design of the Flow and Jump Sets

Example

Main Result

Theorem

The set $\mathcal{A}=\{(t, x, \hat{x}): x=\hat{x}\}$ is uniformly globally asymptotically stable and globally exponentially stable in the t-direction. Moreover, $\left(t, y(t), \hat{x}_{\downarrow}(t)\right) \in \hat{\Omega}$ for all times.

Proof.

- Lyapunov function $\mathbf{V}(t, x, \hat{x})=(x-\hat{x})^{\top} P(t)^{-1}(x-\hat{x})$
- During the flows, $\dot{\mathbf{V}} \leq-\lambda \mathbf{V}$
- During the jumps, $\mathbf{V}^{+}-\mathbf{V} \leq-\epsilon$, as long as $\operatorname{dist}(\hat{\mathcal{J}}, \hat{\mathcal{D}})>0$
- Number of jumps is finite and every solution is complete
- Pre-asymptotic stability and completeness \rightarrow uniform global asymptotic stability.
- $|X(t, j)|_{\mathcal{A}} \leq k \exp (-\lambda t)|X(0,0)|_{\mathcal{A}}$.
- $|X(t, j)|_{\mathcal{A}} \leq \kappa\left(|X(0,0)|_{\mathcal{A}}\right) \exp (-\lambda(t+j))|X(0,0)|_{\mathcal{A}}$.

Simulation Scenario

Simulation (A vehicle moving on a road with angle θ)
Let $x \in \mathbb{R}^{4}$ such that (x_{1}, x_{2}) is the (measured) position and (x_{3}, x_{4}) is the velocity. Second order dynamics:

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ll}
0 & I_{2} \\
0 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
I_{2}
\end{array}\right] u(t) \\
& y=\left[\begin{array}{ll}
I_{2} & 0
\end{array}\right] x
\end{aligned}
$$

with

$$
u(t)=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] v(t)
$$

which leads to the constraint

$$
\left[\begin{array}{llll}
\sin (\theta) & -\cos (\theta) & 0 & 0
\end{array}\right]^{\top} x(t)=0
$$

Simulation Scenario

Simulation (A vehicle moving on a road with angle θ)

- Objective set

$$
\hat{\Omega}=\left\{\hat{x} \in \mathbb{R}^{4}:\left|\sin (\theta) \hat{x}_{1}-\cos (\theta) \hat{x}_{2}\right| \leq \mu\right\} .
$$

- Flow set

$$
\hat{\mathcal{F}}=\left\{\hat{x} \in \mathbb{R}^{4}:\left|\sin (\theta) \hat{x}_{1}-\cos (\theta) \hat{x}_{2}\right| \leq \epsilon\right\} .
$$

- Jump set

$$
\hat{\mathcal{J}}=\left\{\hat{x} \in \mathbb{R}^{4}:\left|\sin (\theta) \hat{x}_{1}-\cos (\theta) \hat{x}_{2}\right| \geq \epsilon\right\} .
$$

with $0<\epsilon<\mu$.

Simulation Scenario

Conclusion

- A hybrid observer is designed for the constrained state estimation of LTV systems subject to linear equality constraints
- Projection operator on surfaces is used to design the jump map of the observer
- Future work for nonlinear systems with nonlinear/inequality constraints

Conclusion

- A hybrid observer is designed for the constrained state estimation of LTV systems subject to linear equality constraints
- Projection operator on surfaces is used to design the jump map of the observer
- Future work for nonlinear systems with nonlinear/inequality constraints

Conclusion

- A hybrid observer is designed for the constrained state estimation of LTV systems subject to linear equality constraints
- Projection operator on surfaces is used to design the jump map of the observer
- Future work for nonlinear systems with nonlinear/inequality constraints

Conclusion

- A hybrid observer is designed for the constrained state estimation of LTV systems subject to linear equality constraints
- Projection operator on surfaces is used to design the jump map of the observer
- Future work for nonlinear systems with nonlinear/inequality constraints

Thank you!

